Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 121(4): 1355-1365, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38079069

RESUMEN

N-linked glycosylation is one of the most important post-translational modifications of monoclonal antibodies (mAbs) and is considered to be a critical quality attribute (CQA), as the glycan composition often has immunomodulatory effects. Since terminal galactose residues of mAbs can affect antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytolysis (CDC) activation, serum half-life, and antiviral activity it has to be monitored, controlled and modulated to ensure therapeutic effects. The ability of small noncoding microRNAs (miRNAs) to modulate glycosylation in Chinese hamster ovary (CHO) production cells was recently reported establishing miRNAs as engineering tools for modulation of protein glycosylation. In this study, we report the characterization and validation of miRNAs as engineering tools for increased (mmu-miR-452-5p, mmu-miR-193b-3p) or decreased (mmu-miR-7646-5p, mmu-miR-7243-3p, mmu-miR-1668, mmu-let-7c-1-3p, mmu-miR-7665-3p, mmu-miR-6403) degree of galactosylation. Furthermore, the biological mode of action regulating gene expression of the galactosylation pathway was characterized as well as their influence on bioprocess-related parameters. Most important, stable plasmid-based overexpression of these miRNAs represents a versatile tool for engineering N-linked galactosylation to achieve favorable phenotypes in cell lines for biopharmaceutical production.


Asunto(s)
MicroARNs , Animales , Cricetinae , MicroARNs/genética , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/metabolismo , Células CHO , Cricetulus , Glicosilación
2.
Metab Eng ; 77: 53-63, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36906118

RESUMEN

N-linked glycosylation is a crucial post-translational modification of many biopharmaceuticals, including monoclonal antibodies (mAbs), capable of modifying their biological effect in patients and thus considered as a critical quality attribute (CQA). However, expression of desired and consistent glycosylation patterns remains a constant challenge for the biopharmaceutical industry and constitutes the need for tools to engineer glycosylation. Small non-coding microRNAs (miRNAs) are known regulators of entire gene networks and have therefore the potential of being used as tools for modulation of glycosylation pathways and for glycoengineering. Here, we demonstrate that novel identified natural miRNAs are capable of altering N-linked glycosylation patterns on mAbs expressed in Chinese hamster ovary (CHO) cells. We established a workflow for a functional high-throughput screening of a complete miRNA mimic library and identified 82 miRNA sequences affecting various moieties including galactosylation, sialylation, and α-1,6 linked core-fucosylation, an important glycan feature influencing antibody-dependent cytotoxicity (ADCC). Subsequent validation shed light on the intra-cellular mode of action and the impact on the cellular fucosylation pathway of miRNAs reducing core-fucosylation. While multiplex approaches increased phenotypic effects on the glycan structure, a synthetic biology approach utilizing rational design of artificial miRNAs further enhanced the potential of miRNAs as novel, versatile and tune-able tools for engineering of N-linked glycosylation pathways and expressed glycosylation patterns towards favourable phenotypes.


Asunto(s)
MicroARNs , Cricetinae , Animales , Glicosilación , MicroARNs/genética , MicroARNs/metabolismo , Células CHO , Cricetulus , Anticuerpos Monoclonales/genética , Polisacáridos/genética
3.
Biotechnol Bioeng ; 117(1): 5-16, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31631329

RESUMEN

Although most therapeutic monoclonal antibodies (mAbs) can routinely be produced in the multigram per litre range, some mAb candidates turn out to be difficult-to-express (DTE). In addition, the class of more complex biological formats is permanently increasing and mammalian expression systems like Chinese hamster ovary (CHO) cell lines can show low performance. Hence, there is an urgent need to identify any rate limiting processing step during cellular synthesis. Therefore, we assessed the intracellular location of the DTE antibody mAb2 by fluorescence and electron microscopy (EM) and revealed an accumulation of the antibody, which led to an aberrant morphology of the endoplasmic reticulum (ER). Analysis of underlying cellular mechanisms revealed that neither aggregation nor antibody assembly, but folding represented the reason for hampered secretion. We identified that the disulfide bridge formation within the antibody light chain (LC) was impaired due to less recognition by protein disulfide isomerase (PDI). As a consequence, the DTE molecule was degraded intracellularly by the ubiquitin proteasome system via ER-associated degradation (ERAD). This study revealed that with the continuous emergence of DTE therapeutic protein candidates, special attention needs to be drawn to optimization processes to ensure manufacturability.


Asunto(s)
Anticuerpos Monoclonales , Degradación Asociada con el Retículo Endoplásmico/fisiología , Proteínas Recombinantes , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Monoclonales/metabolismo , Células CHO , Ingeniería Celular , Cricetinae , Cricetulus , Disulfuros/química , Disulfuros/metabolismo , Espacio Intracelular/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
4.
Cell Mol Life Sci ; 76(3): 539-559, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30392041

RESUMEN

Apoptosis is a form of directed programmed cell death with a tightly regulated signalling cascade for the destruction of single cells. MicroRNAs (miRNAs) play an important role as fine tuners in the regulation of apoptotic processes. MiR-493-3p mimic transfection leads to the induction of apoptosis causing the breakdown of mitochondrial membrane potential and the activation of Caspases resulting in the fragmentation of DNA in several ovarian carcinoma cell lines. Ovarian cancer shows with its pronounced heterogeneity a very high death-to-incidence ratio. A target gene analysis for miR-493-3p was performed for the investigation of underlying molecular mechanisms involved in apoptosis signalling pathways. Elevated miR-493-3p levels downregulated the mRNA and protein expression levels of Serine/Threonine Kinase 38 Like (STK38L), High Mobility Group AT-Hook 2 (HMGA2) and AKT Serine/Threonine Kinase 2 (AKT2) by direct binding as demonstrated by luciferase reporter assays. Notably, the protein expression of RAF1 Proto-Oncogene, Serine/Threonine Kinase (RAF1) was almost completely downregulated by miR-493-3p. This interaction, however, was indirect and regulated by STK38L phosphorylation. In addition, RAF1 transcription was diminished as a result of reduced transcription of ETS proto-oncogene 1 (ETS1), another direct target of miR-493-3p. Taken together, our observations have uncovered the apoptosis inducing potential of miR-493-3p through its regulation of multiple target genes participating in the extrinsic and intrinsic apoptosis pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , MicroARNs/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Apoptosis/genética , Sitios de Unión , Factor de Transcripción E2F5/genética , Femenino , Proteína HMGA2/genética , Humanos , MicroARNs/genética , Proteínas Serina-Treonina Quinasas/genética , Proto-Oncogenes Mas , Proteína Proto-Oncogénica c-ets-1/genética , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/efectos de los fármacos
5.
Plasmid ; 103: 25-35, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30954454

RESUMEN

The development of CRISPR interference (CRISPRi) technology has dramatically increased the pace and the precision of target identification during platform strain development. In order to develop a simple, reliable, and dual-inducible CRISPRi system for the industrially relevant Corynebacterium glutamicum, we combined two different inducible repressor systems in a single plasmid to separately regulate the expression of dCas9 (anhydro-tetracycline-inducible) and a given single guide RNA (IPTG-inducible). The functionality of the resulting vector was demonstrated by targeting the l-arginine biosynthesis pathway in C. glutamicum. By co-expressing dCas9 and a specific single guide RNA targeting the 5'-region of the argininosuccinate lyase gene argH, the specific activity of the target enzyme was down-regulated and in a l-arginine production strain, l-arginine formation was shifted towards citrulline formation. The system was also employed for down-regulation of multiple genes by concatenating sgRNA sequences encoded on one plasmid. Simultaneous down-regulated expression of both argH and the phosphoglucose isomerase gene pgi proved the potential of the system for multiplex targeting. The system can be a promising tool for further pathway engineering in C. glutamicum. Cumulative effects on targeted genes can be rapidly evaluated avoiding tedious and time-consuming traditional gene knockout approaches.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas CRISPR-Cas , Corynebacterium glutamicum/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Marcación de Gen/métodos , Plásmidos/química , Arginina/biosíntesis , Argininosuccinatoliasa/genética , Argininosuccinatoliasa/metabolismo , Proteínas Bacterianas/metabolismo , Emparejamiento Base , Secuencia de Bases , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Citrulina/biosíntesis , Corynebacterium glutamicum/efectos de los fármacos , Corynebacterium glutamicum/metabolismo , Glucosa-6-Fosfato Isomerasa/genética , Glucosa-6-Fosfato Isomerasa/metabolismo , Isopropil Tiogalactósido/farmacología , Plásmidos/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Tetraciclinas/farmacología
6.
Analyst ; 144(21): 6334-6341, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31553337

RESUMEN

Antibody aggregates may occur as undesirable by-products during the manufacturing process of biopharmaceutical proteins since parameters such as pH, temperature, ionic strength, protein concentration, oxygen, and shear forces can lead to aggregate formation. These aggregates have to be detected, quantified and removed cost extensively, since they may reduce the safety and efficacy of the product. Protein aggregates can range from small soluble dimers up to large visible agglomerates. Differently aggregated antibody samples were characterized for their soluble and insoluble aggregate concentration by size exclusion chromatography and fluorescence microscopy, respectively. The samples exhibited a high diversity of protein aggregates, which varied in amount, size and shape. For secondary structure characterization, infrared attenuated total reflection (IR-ATR) and two-dimensional fluorescence (2D-FL) spectroscopy were applied. Using direct spectroscopy, only marginal differences of various antibody aggregates were evident. However, using appropriate chemometric strategies, the evaluation of IR-ATR and 2D-FL spectra yielded the discrimination of differently aggregated antibody samples with yet unprecedented precision.


Asunto(s)
Anticuerpos Monoclonales/análisis , Agregado de Proteínas , Animales , Anticuerpos Monoclonales/química , Células CHO , Cricetulus , Inmunoglobulina G/análisis , Inmunoglobulina G/química , Análisis de Componente Principal , Estructura Secundaria de Proteína , Espectrometría de Fluorescencia/métodos , Espectrofotometría Infrarroja/métodos
7.
Biotechnol Bioeng ; 115(5): 1173-1185, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29280480

RESUMEN

Protein aggregation of monoclonal antibodies (mAbs) is a common phenomenon associated with the production of these biopharmaceuticals. These aggregates can lead to adverse side effects in patients upon administration, thus expensive downstream processing steps to remove the higher molecular weight species are inevitable. A preferable approach is to reduce the level of aggregation during bioprocessing by a careful adjustment of critical process parameters. Recently, new analytical methods enabled characterization of mAb aggregation during bioprocessing of mammalian cells. Furthermore, rapid and efficient bioprocess optimization has been performed using design of experiments (DoE) strategies. In this work, we describe a DoE-based approach for the analysis of process parameters and cell culture additives influencing protein aggregation in Chinese hamster ovary (CHO) cell cultures. Important bioprocess variables influencing the aggregation of mAb and host cell proteins were identified in initial screening experiments. Response surface modeling was further applied in order to find optimal conditions for the reduction of protein aggregation during cell culture. It turned out that a temperature-shift to 31 °C, osmolality above 420 mOsm/kg, agitation at 100 rpm and 0.04% (w/v) antifoam significantly reduced the level of aggregates without substantial detrimental effects on cell culture performance in our model system. Finally, the aggregation reducing conditions were verified and applied to another production system using a different bioprocess medium and another CHO cell line producing another mAb. Our results show that protein aggregation can be controlled during cell culture and helps to improve bioprocessing of mAbs, by giving insights into the protein aggregation at its origin in mammalian cell culture.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Agregado de Proteínas , Desnaturalización Proteica , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Células CHO , Cricetulus , Medios de Cultivo/química , Humanos , Temperatura
8.
Biotechnol Bioeng ; 115(8): 2027-2038, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29665036

RESUMEN

Chinese hamster ovary (CHO) cells still represent the major production host for therapeutic proteins. However, multiple limitations have been acknowledged leading to the search for alternative expression systems. CEVEC's amniocyte production (CAP) cells are human production cells demonstrated to enable efficient overexpression of recombinant proteins with human glycosylation pattern. However, CAP cells have not yet undergone any engineering approaches to optimize process parameters for a cheaper and more sustainable production of biopharmaceuticals. Thus, we assessed the possibility to enhance CAP cell production capacity via cell engineering using miRNA technology. Based on a previous high-content miRNA screen in CHO-SEAP cells, selected pro-productive miRNAs including, miR-99b-3p, 30a-5p, 329-3p, 483-3p, 370-3p, 219-1-3p, 3074-5p, 136-3p, 30e-5p, 1a-3p, and 484-5p, were shown to act pro-productive and product independent upon transient transfection in CAP and CHO antibody expressing cell lines. Stable expression of miRNAs established seven CAP cell pools with an overexpression of the pro-productive miRNA strand. Subsequent small-scale screening as well as upscaling batch experiments identified miR-136 and miR-3074 to significantly increase final mAb concentration in CAP-mAb cells. Transcriptomic changes analyzed by microarrays identified several lncRNAs as well as growth and apoptosis-related miRNAs to be differentially regulated in CAP-mAb-miR-136 and -miR-3074. This study presents the first engineering approach to optimize the alternative human expression system of CAP-cells.


Asunto(s)
Productos Biológicos/metabolismo , Ingeniería Metabólica/métodos , MicroARNs/biosíntesis , Proteínas Recombinantes/metabolismo , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/metabolismo , Línea Celular , Humanos , MicroARNs/genética , Proteínas Recombinantes/genética
9.
Microb Cell Fact ; 17(1): 168, 2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30367634

RESUMEN

BACKGROUND: Increasing efforts have been made to assess the potential of Escherichia coli strains for the production of complex recombinant proteins. Since a considerable part of therapeutic proteins are glycoproteins, the lack of the post-translational attachment of sugar moieties in standard E. coli expression strains represents a major caveat, thus limiting the use of E. coli based cell factories. The establishment of an E. coli expression system capable of protein glycosylation could potentially facilitate the production of therapeutics with a putative concomitant reduction of production costs. RESULTS: The previously established E. coli strain expressing the soluble form of the functional human-derived glycosyltransferase polypeptide N-acetylgalactosaminyltransferase 2 (GalNAc-T2) was further modified by co-expressing the UDP-GlcNAc 4-epimerase WbgU derived from Plesiomonas shigelloides. This enables the conversion of uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc) to the sugar donor uridine 5'-diphospho-N-acetylgalactosamine (UDP-GalNAc) in the bacterial cytoplasm. Initially, the codon-optimised gene wbgU was inserted into a pET-derived vector and a Tobacco Etch Virus (TEV) protease cleavable polyhistidine-tag was translationally fused to the C- terminus of the amino acid sequence. The 4-epimerase was subsequently expressed and purified. Following the removal of the polyhistidine-tag, WbgU was analysed by circular dichroism spectroscopy to determine folding state and thermal transitions of the protein. The in vitro activity of WbgU was validated by employing a modified glycosyltransferase assay. The conversion of UDP-GlcNAc to UDP-GalNAc was shown by capillary electrophoresis analysis. Using a previously established chaperone pre-/co- expression platform, the in vivo activity of both glycosyltransferase GalNAc-T2 and 4-epimerase WbgU was assessed in E. coli, in combination with a mucin 10-derived target protein. Monitoring glycosylation by liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS), the results clearly indicated the in vivo glycosylation of the mucin-derived acceptor peptide. CONCLUSION: In the present work, the previously established E. coli- based expression system was further optimized and the potential for in vivo O-glycosylation was shown by demonstrating the transfer of sugar moieties to a mucin-derived acceptor protein. The results offer the possibility to assess the practical use of the described expression platform for in vivo glycosylations of important biopharmaceutical compounds in E. coli.


Asunto(s)
Escherichia coli/metabolismo , Mucinas/metabolismo , Secuencia de Aminoácidos , Carbohidrato Epimerasas/aislamiento & purificación , Carbohidrato Epimerasas/metabolismo , Dicroismo Circular , Glicosilación , Mucinas/química , N-Acetilgalactosaminiltransferasas/metabolismo , Péptidos/química , Péptidos/metabolismo , Polipéptido N-Acetilgalactosaminiltransferasa
10.
Anal Bioanal Chem ; 409(17): 4149-4156, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28447132

RESUMEN

Aggregation of therapeutic proteins is a major concern as aggregates lower the yield and can impact the efficacy of the drug as well as the patient's safety. It can occur in all production stages; thus, it is essential to perform a detailed analysis for protein aggregates. Several methods such as size exclusion high-performance liquid chromatography (SE-HPLC), light scattering, turbidity, light obscuration, and microscopy-based approaches are used to analyze aggregates. None of these methods allows determination of all types of higher molecular weight (HMW) species due to a limited size range. Furthermore, quantification and specification of different HMW species are often not possible. Moreover, automation is a perspective challenge coming up with automated robotic laboratory systems. Hence, there is a need for a fast, high-throughput-compatible method, which can detect a broad size range and enable quantification and classification. We describe a novel approach for the detection of aggregates in the size range 1 to 1000 µm combining fluorescent dyes for protein aggregate labelling and automated fluorescence microscope imaging (aFMI). After appropriate selection of the dye and method optimization, our method enabled us to detect various types of HMW species of monoclonal antibodies (mAbs). Using 10 µmol L-1 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonate (Bis-ANS) in combination with aFMI allowed the analysis of mAb aggregates induced by different stresses occurring during downstream processing, storage, and administration. Validation of our results was performed by SE-HPLC, UV-Vis spectroscopy, and dynamic light scattering. With this new approach, we could not only reliably detect different HMW species but also quantify and classify them in an automated approach. Our method achieves high-throughput requirements and the selection of various fluorescent dyes enables a broad range of applications.


Asunto(s)
Anticuerpos Monoclonales/análisis , Microscopía Fluorescente/métodos , Agregado de Proteínas , Aerosoles/química , Naftalenosulfonatos de Anilina/química , Cromatografía Líquida de Alta Presión , Colorantes Fluorescentes/química , Congelación , Ensayos Analíticos de Alto Rendimiento/métodos , Imagen Óptica/métodos
11.
Biotechnol Bioeng ; 113(4): 830-41, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26461143

RESUMEN

Cell engineering and bioprocess optimizations such as low temperature cultivation represent powerful tools to improve cellular performance and product yields of mammalian production cells. Besides monoclonal antibodies (mABs), novel biotherapeutic formats such as viral vectors will gain increasing importance. Here, we demonstrate that similar to Chinese hamster ovary (CHO) cells, product yields of recombinant adeno-associated virus (rAAV) producing HeLa cells can be markedly increased by low temperature cultivation. MicroRNAs (miRNAs) are small non-coding RNAs that critically regulate cell phenotypes. We thus investigated differential miRNA expression in response to mild hypothermia in CHO and HeLa production cells. We discovered miR-483 to be substantially up-regulated upon temperature down-shift in both cell types. Functional validation experiments revealed that introduction of miR-483 mimics led to a significant increase in both rAAV and mAB production in HeLa and CHO cells, respectively. Furthermore, inhibition of miR-483 up-regulation during mild hypothermia significantly decreased product yields, suggesting that miR-483 is a key regulator of cellular productivity in mammalian cells. In addition, miRNA target gene identification indicated that miR-483 might regulate genes directly involved in cellular survival and protein expression. Our results highlight that miR-483 is a valuable tool for product-independent engineering of mammalian production cells.


Asunto(s)
Regulación de la Expresión Génica/efectos de la radiación , MicroARNs/metabolismo , Proteínas Recombinantes/biosíntesis , Temperatura , Animales , Células CHO , Supervivencia Celular , Cricetulus , Perfilación de la Expresión Génica , Células HeLa , Humanos
12.
Biotechnol Bioeng ; 112(10): 2142-53, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25997799

RESUMEN

Histone deacetylase (HDAC) inhibitors have been exploited for years to improve recombinant protein expression in mammalian production cells. However, global HDAC inhibition is associated with negative effects on various cellular processes. microRNAs (miRNAs) have been shown to regulate gene expression in almost all eukaryotic cell types by controlling entire cellular pathways. Since miRNAs recently have gained much attention as next-generation cell engineering tool to improve Chinese hamster ovary (CHO) cell factories, we were interested if miRNAs are able to specifically repress HDAC expression in CHO cells to circumvent limitations of unspecific HDAC inhibition. We discovered a novel miRNA in CHO cells, miR-2861, which was shown to enhance productivity in various recombinant CHO cell lines. Furthermore, we demonstrate that miR-2861 might post-transcriptionally regulate HDAC5 in CHO cells. Intriguingly, siRNA-mediated HDAC5 suppression could be demonstrated to phenocopy pro-productive effects of miR-2861 in CHO cells. This supports the notion that miRNA-induced inhibition of HDAC5 may contribute to productivity enhancing effects of miR-2861. Furthermore, since product quality is fundamental to safety and functionality of biologics, we examined the effect of HDAC inhibition on critical product quality attributes. In contrast to unspecific HDAC inhibition using VPA, enforced expression of miR-2861 did not negatively influence antibody aggregation or N-glycosylation. Our findings highlight the superiority of miRNA-mediated inhibition of specific HDACs and present miR-2861 as novel cell engineering tool for improving CHO manufacturing cells.


Asunto(s)
Regulación de la Expresión Génica , Inhibidores de Histona Desacetilasas/metabolismo , Ingeniería Metabólica , MicroARNs/metabolismo , Proteínas Recombinantes/biosíntesis , Animales , Anticuerpos/genética , Anticuerpos/metabolismo , Células CHO , Cricetulus , Proteínas Recombinantes/genética
13.
Microb Cell Fact ; 14: 3, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25582753

RESUMEN

BACKGROUND: Recombinant protein-based therapeutics have become indispensable for the treatment of many diseases. They are produced using well-established expression systems based on bacteria, yeast, insect and mammalian cells. The majority of therapeutic proteins are glycoproteins and therefore the post-translational attachment of sugar residues is required. The development of an engineered Escherichia coli-based expression system for production of human glycoproteins could potentially lead to increased yields, as well as significant decreases in processing time and costs. RESULTS: This work describes the expression of functional human-derived glycosyltransferase UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 2 (GalNAcT2) in a recombinant E. coli strain. For expression, a codon-optimised gene encoding amino acids 52-571 of GalNAcT2 lacking the transmembrane N-terminal domain was inserted into a pET-23 derived vector encoding a polyhistidine-tag which was translationally fused to the N-terminus of the glycosyltransferase (HisDapGalNAcT2). The glycosyltransferase was produced in E. coli using a recently published expression system. Soluble HisDapGalNAcT2 produced in SHuffle® T7 host cells was purified using nickel affinity chromatography and was subsequently analysed by size exclusion chromatography coupled to multi-angle light scattering (SEC-MALS) and circular dichroism spectroscopy to determine molecular mass, folding state and thermal transitions of the protein. The activity of purified HisDapGalNAcT2 was monitored using a colorimetric assay based on the release of phosphate during transfer of glycosyl residues to a model acceptor peptide or, alternatively, to the granulocyte-colony stimulating growth factor (G-CSF). Modifications were assessed by Matrix Assisted Laser Desorption Ionization Time-of-flight Mass Spectrometry analysis (MALDI-TOF-MS) and Electrospray Mass Spectrometry analysis (ESI-MS). The results clearly indicate the glycosylation of the acceptor peptide and of G-CSF. CONCLUSION: In the present work, we isolated a human-derived glycosyltransferase by expressing soluble HisDapGalNAcT2 in E. coli. The functional activity of the enzyme was shown in vitro. Further investigations are needed to assess the potential of in vivo glycosylation in E. coli.


Asunto(s)
N-Acetilgalactosaminiltransferasas/metabolismo , Secuencia de Aminoácidos , Cromatografía de Afinidad , Cromatografía en Gel , Dicroismo Circular , Colorimetría , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Glicosilación , Factor Estimulante de Colonias de Granulocitos/metabolismo , Histidina/genética , Histidina/metabolismo , Humanos , Immunoblotting , Datos de Secuencia Molecular , Peso Molecular , N-Acetilgalactosaminiltransferasas/genética , Oligopéptidos/genética , Oligopéptidos/metabolismo , Pliegue de Proteína , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Polipéptido N-Acetilgalactosaminiltransferasa
14.
RNA Biol ; 12(3): 238-47, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25826657

RESUMEN

Understanding the multifaceted nature of microRNA (miRNA) function in mammalian cells is still a challenge. Commonly accepted principles of cooperativity and multiplicity of miRNA function imply that individual mRNAs can be targeted by several miRNAs whereas a single miRNA may concomitantly regulate a subset of different genes. However, there is a paucity of information whether multiple miRNAs regulate critical cellular events and thereby acting redundantly. To gain insight into this notion, we conducted an unbiased high-content miRNA screen by individually introducing 1139 miRNA mimics into Chinese hamster ovary (CHO) cells. We discovered that 66% of all miRNAs significantly impacted on proliferation, protein expression, apoptosis and necrosis. In summary, we provide evidence for a substantial degree of redundancy among miRNAs to maintain cellular homeostasis.


Asunto(s)
Redes y Vías Metabólicas/genética , MicroARNs/genética , ARN Mensajero/genética , Animales , Apoptosis/genética , Células CHO , Proliferación Celular , Cofilina 2/antagonistas & inhibidores , Cofilina 2/genética , Cofilina 2/metabolismo , Cricetulus , Expresión Génica , Perfilación de la Expresión Génica , Homeostasis/genética , MicroARNs/metabolismo , Imitación Molecular , Necrosis/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transfección
15.
Anal Bioanal Chem ; 407(16): 4849-56, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25869484

RESUMEN

Product yields, efficacy, and safety of monoclonal antibodies (mAbs) are reduced by the formation of higher molecular weight aggregates during upstream processing. In-process characterization of mAb aggregate formation is a challenge since there is a lack of a fast detection method to identify mAb aggregates in cell culture. In this work, we present a rapid method to characterize mAb aggregate-containing Chinese hamster ovary (CHO) cell culture supernatants. The fluorescence dyes thioflavin T (ThT) and 4-4-bis-1-phenylamino-8-naphthalene sulfonate (Bis-ANS) enabled the detection of soluble as well as large mAb aggregates. Partial least square (PLS) regression models were used to evaluate the linearity of the dye-based mAb aggregate detection in buffer down to a mAb aggregate concentration of 2.4 µg mL(-1). Furthermore, mAb aggregates were detected in bioprocess medium using Bis-ANS and ThT. Dye binding to aggregates was stable for 60 min, making the method robust and reliable. Finally, the developed method using 10 µmol L(-1) Bis-ANS enabled discrimination between CHO cell culture supernatants containing different levels of mAb aggregates. The method can be adapted for high-throughput screening, e.g., to screen for cell culture conditions influencing mAb product quality, and hence can contribute to the improvement of production processes of biopharmaceuticals in mammalian cell culture.


Asunto(s)
Anticuerpos Monoclonales/química , Colorantes Fluorescentes/química , Animales , Células CHO , Cricetinae , Cricetulus , Medios de Cultivo
16.
Eng Life Sci ; 24(6): 2300234, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38845814

RESUMEN

Cell engineering strategies typically rely on energy-consuming overexpression of genes or radical gene-knock out. Both strategies are not particularly convenient for the generation of slightly modulated phenotypes, as needed in biosimilar development of for example differentially fucosylated monoclonal antibodies (mAbs). Recently, transiently transfected small noncoding microRNAs (miRNAs), known to be regulators of entire gene networks, have emerged as potent fucosylation modulators in Chinese hamster ovary (CHO) production cells. Here, we demonstrate the applicability of stable miRNA overexpression in CHO production cells to adjust the fucosylation pattern of mAbs as a model phenotype. For this purpose, we applied a miRNA chaining strategy to achieve adjustability of fucosylation in stable cell pools. In addition, we were able to implement recently developed artificial miRNAs (amiRNAs) based on native miRNA sequences into a stable CHO expression system to even further fine-tune fucosylation regulation. Our results demonstrate the potential of miRNAs as a versatile tool to control mAb fucosylation in CHO production cells without adverse side effects on important process parameters.

17.
Chimia (Aarau) ; 66(5): 281-5, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22867536

RESUMEN

Human recombinant granulocyte colony stimulating factor (rhG-CSF) is widely used in hematology and oncology for the treatment of neutropenia, for the restoration of neutrophil production after bone marrow transplantation, for myelodysplastic syndromes, and aplastic anemia. The E. coli expression system is commonly used for fast recombinant production of rhG-CSF at a large scale. We have applied a novel autoinduction method for the batch expression of rhG-CSF to study whether this new system would increase cell mass and target-protein yield compared to conventional E. coli cell culture and induction with isopropyl ß-D-thiogalactopyranoside (IPTG). We could demonstrate 3-fold higher culture densities and a 5-fold higher protein yield compared to IPTG induction without the need to monitor cell growth in a shortened 24 h expression procedure. rhG-CSF expressed in autoinduction media was successfully extracted from E. coli inclusion bodies and refolded by dialysis. After size exclusion chromatography (SEC) purification, rhG-CSF showed similar conformation, biological activity and aggregation profile compared to the commercially available biosimilar TEVAgrastim(®) (TEVA Pharma AG). Expression by autoinduction is suggested as a cost- and time-effective method for rhG-CSF production.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos/biosíntesis , Animales , Proliferación Celular/efectos de los fármacos , Química Farmacéutica , Dicroismo Circular , Clonación Molecular , Medios de Cultivo , Industria Farmacéutica , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Factor Estimulante de Colonias de Granulocitos/química , Factor Estimulante de Colonias de Granulocitos/farmacología , Humanos , Janus Quinasa 1/fisiología , Ratones , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Factor de Transcripción STAT3/fisiología , Transducción de Señal/efectos de los fármacos , Espectrometría de Fluorescencia , Tiogalactósidos/farmacología
18.
Sci Rep ; 12(1): 2268, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145179

RESUMEN

Unfavorable process conditions lead to adverse cultivation states, limited cell growth and thus hamper biotherapeutic protein production. Oxygen deficiency or hyperosmolality are among the most critical process conditions and therefore require continuous monitoring. We established a novel sensor CHO cell line with the ability to automatically sense and report unwanted process conditions by the expression of destabilized fluorescent proteins. To this end, an inducible real-time system to detect hypoxia by hypoxia response elements (HREs) of vascular endothelial growth factor (VEGF) origin reporting limitations by the expression of destabilized green fluorescent protein (GFP) was created. Additionally, we established a technique for observing hyperosmolality by exploiting osmotic response elements (OREs) for the expression of unstable blue fluorescent protein (BFP, FKBP-BFP), enabling the simultaneous automated supervision of two bioprocess parameters by using a dual sensor CHO cell line transfected with a multiplexable monitoring system. We finally also provided a fully automated in-line fluorescence microscopy-based setup to observe CHO cells and their response to varying culture conditions. In summary, we created the first CHO cell line, reporting unfavorable process parameters to the operator, and provided a novel and promising sensor technology accelerating the implementation of the process analytical technology (PAT) initiative by innovative solutions.


Asunto(s)
Técnicas Biosensibles , Genes Reporteros , Animales , Células CHO , Cricetulus , Hipoxia , Concentración Osmolar , Biología Sintética , Factor A de Crecimiento Endotelial Vascular/genética
19.
N Biotechnol ; 66: 79-88, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34710621

RESUMEN

Chinese Hamster Ovary (CHO) cells are the most frequently used biopharmaceutical production hosts, although industry is presently suffering from their variable recombinant product quality, insufficient long-term stability and low productivity. Here, we present an effort to address overall cell line engineering by a novel bottom-up microRNA (miRNA) screening approach. miRNAs are small non-coding RNAs known to regulate global gene expression at the post-transcriptional level and have proved to serve as promising tools for cell line engineering for over a decade. Here the miRNome of plasma cells (PCs) has been analyzed as the natural blueprint for optimized production and secretion of antibodies. Performing comparative miRNome cross-species expression analysis of four murine/human PC-derived (PCD) and two CHO cell lines showed 147 conserved miRNAs to be differentially expressed between PCDs and CHOs. Conducting a targeted miRNA screen of this PC-specific miRNA subset revealed 14 miRNAs to improve bioprocess relevant parameters in CHO cells, among them the PC-characteristic miR-183 cluster. Finally, miRNA target prediction tools and transcriptome analysis were combined to elucidate differentially regulated lysine degradation and fatty acid metabolism pathways in monoclonal antibody (mAb) expressing CHO-DG44 and CHO-K1 cells, respectively. Thus, substantial new insights into molecular and cellular mechanisms of biopharmaceutical production cell lines can be gained by targeted bottom-up miRNA screenings.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Productos Biológicos , MicroARNs , Células Plasmáticas/metabolismo , Animales , Formación de Anticuerpos , Productos Biológicos/metabolismo , Células CHO , Cricetinae , Cricetulus , Ácidos Grasos/metabolismo , Humanos , Factores Inmunológicos , Lisina/metabolismo , Ratones , MicroARNs/genética , Transcriptoma
20.
PLoS One ; 16(2): e0247689, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33626080

RESUMEN

Aiming at streamlining GPCR production from E. coli inclusion bodies for structural analysis, we present a generic approach to assess and optimize refolding yield through thermostability analysis. Since commonly used hydrophobic dyes cannot be applied as probes for membrane protein unfolding, we adapted a technique based on reacting cysteins exposed upon thermal denaturation with fluorescent 7-Diethylamino-3-(4-maleimidophenyl)-4-methylcoumarin (CPM). Successful expression, purification and refolding is shown for two G protein-coupled receptors (GPCR), the sphingosine-1-phosphate receptor S1P1, and the orphan receptor GPR3. Refolded receptors were subjected to lipidic cubic phase crystallization screening.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Cuerpos de Inclusión/metabolismo , Replegamiento Proteico , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA