Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(41): e2117743119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191232

RESUMEN

Sulfated glycans have been found to be associated with various diseases and therefore have significant potential in molecular pathology as biomarkers. Although lectins are useful reagents for detecting glycans, there is a paucity of sulfate-recognizing lectins, and those that exist, such as from Maackia amurensis, display mixed specificities. Recombinant lectin engineering offers an emerging tool for creating novel glycan recognition by altering and/or enhancing endogenous specificities. The present study demonstrated the use of computational approaches in the engineering of a mutated form of E-selectin that displayed highly specific recognition of 6'-sulfo-sialyl Lewis X (6'-sulfo-sLex), with negligible binding to its endogenous nonsulfated ligand, sLex. This new specificity mimics that of the unrelated protein Siglec-8, for which 6'-sulfo-sLex is its preferred ligand. Molecular dynamics simulations and energy calculations predicted that two point mutations (E92A/E107A) would be required to stabilize binding to the sulfated oligosaccharide with E-selectin. In addition to eliminating putative repulsions between the negatively charged side chains and the sulfate moiety, the mutations also abolished favorable interactions with the endogenous ligand. Glycan microarray screening of the recombinantly expressed proteins confirmed the predicted specificity change but also identified the introduction of unexpected affinity for the unfucosylated form of 6'-sulfo-sLex (6'-sulfo-sLacNAc). Three key requirements were demonstrated in this case for engineering specificity for sulfated oligosaccharide: 1) removal of unfavorable interactions with the 6'-sulfate, 2) introduction of favorable interactions for the sulfate, and 3) removal of favorable interactions with the endogenous ligand.


Asunto(s)
Selectina E , Oligosacáridos , Selectina E/genética , Ligandos , Oligosacáridos/química , Polisacáridos/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Antígeno Sialil Lewis X , Sulfatos/metabolismo
2.
Blood ; 138(13): 1182-1193, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-33945603

RESUMEN

Events mediated by the P-selectin/PSGL-1 pathway play a critical role in the initiation and propagation of venous thrombosis by facilitating the accumulation of leukocytes and platelets within the growing thrombus. Activated platelets and endothelium express P-selectin, which binds P-selectin glycoprotein ligand-1 (PSGL-1) that is expressed on the surface of all leukocytes. We developed a pegylated glycomimetic of the N terminus of PSGL-1, PEG40-GSnP-6 (P-G6), which proved to be a highly potent P-selectin inhibitor with a favorable pharmacokinetic profile for clinical translation. P-G6 inhibits human and mouse platelet-monocyte and platelet-neutrophil aggregation in vitro and blocks microcirculatory platelet-leukocyte interactions in vivo. Administration of P-G6 reduces thrombus formation in a nonocclusive model of deep vein thrombosis with a commensurate reduction in leukocyte accumulation, but without disruption of hemostasis. P-G6 potently inhibits the P-selectin/PSGL-1 pathway and represents a promising drug candidate for the prevention of venous thrombosis without increased bleeding risk.


Asunto(s)
Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/uso terapéutico , Selectina-P/antagonistas & inhibidores , Trombosis/tratamiento farmacológico , Animales , Hemostasis/efectos de los fármacos , Humanos , Glicoproteínas de Membrana/farmacología , Ratones , Ratones Endogámicos C57BL , Microcirculación/efectos de los fármacos , Selectina-P/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Polietilenglicoles/química , Polietilenglicoles/farmacología , Polietilenglicoles/uso terapéutico , Trombosis/metabolismo
3.
Glycobiology ; 30(5): 282-300, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-31742337

RESUMEN

The Tn antigen is a neoantigen abnormally expressed in many human carcinomas and expression correlates with metastasis and poor survival. To explore its biomarker potential, new antibodies are needed that specifically recognize this antigen in tumors. Here we generated two recombinant antibodies to the Tn antigen, Remab6 as a chimeric human IgG1 antibody and ReBaGs6 as a murine IgM antibody and characterized their specificities using multiple biochemical and biological approaches. Both Remab6 and ReBaGs6 recognize clustered Tn structures, but most importantly do not recognize glycoforms of human IgA1 that contain potential cross-reactive Tn antigen structures. In flow cytometry and immunofluorescence analyses, Remab6 recognizes human cancer cell lines expressing the Tn antigen, but not their Tn-negative counterparts. In immunohistochemistry (IHC), Remab6 stains many human cancers in tissue array format but rarely stains normal tissues and then mostly intracellularly. We used these antibodies to identify several unique Tn-containing glycoproteins in Tn-positive Colo205 cells, indicating their utility for glycoproteomics in future biomarker studies. Thus, recombinant Remab6 and ReBaGs6 are useful for biochemical characterization of cancer cells and IHC of tumors and represent promising tools for Tn biomarker discovery independently of recognition of IgA1.


Asunto(s)
Antígenos de Carbohidratos Asociados a Tumores/análisis , Biomarcadores de Tumor/análisis , Carcinoma/diagnóstico , Glicoproteínas/análisis , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antígenos de Carbohidratos Asociados a Tumores/genética , Antígenos de Carbohidratos Asociados a Tumores/inmunología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/inmunología , Carcinoma/genética , Carcinoma/inmunología , Femenino , Glicoproteínas/genética , Glicoproteínas/inmunología , Humanos , Lactante , Masculino , Ratones , Persona de Mediana Edad , Proteínas Recombinantes/inmunología , Células Tumorales Cultivadas , Adulto Joven
4.
J Biol Chem ; 290(37): 22385-97, 2015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26216880

RESUMEN

The chemokine CXCL12 and its G protein-coupled receptors CXCR4 and ACKR3 are implicated in cancer and inflammatory and autoimmune disorders and are targets of numerous antagonist discovery efforts. Here, we describe a series of novel, high affinity CXCL12-based modulators of CXCR4 and ACKR3 generated by selection of N-terminal CXCL12 phage libraries on live cells expressing the receptors. Twelve of 13 characterized CXCL12 variants are full CXCR4 antagonists, and four have Kd values <5 nm. The new variants also showed high affinity for ACKR3. The variant with the highest affinity for CXCR4, LGGG-CXCL12, showed efficacy in a murine model for multiple sclerosis, demonstrating translational potential. Molecular modeling was used to elucidate the structural basis of binding and antagonism of selected variants and to guide future designs. Together, this work represents an important step toward the development of therapeutics targeting CXCR4 and ACKR3.


Asunto(s)
Quimiocina CXCL12/química , Modelos Moleculares , Biblioteca de Péptidos , Receptores CXCR4/química , Receptores CXCR/química , Animales , Quimiocina CXCL12/genética , Quimiocina CXCL12/farmacología , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Células Jurkat , Ratones , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Ingeniería de Proteínas , Receptores CXCR/genética , Receptores CXCR4/genética
6.
Cell Chem Biol ; 30(8): 893-905.e7, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37463583

RESUMEN

Protein glycosylation influences cellular recognition and regulates protein interactions, but how glycosylation functions alongside other common posttranslational modifications (PTMs), like tyrosine sulfation (sTyr), is unclear. We produced a library of 53 chemoenzymatically synthesized glycosulfopeptides representing N-terminal domains of human and murine P-selectin glycoprotein ligand-1 (PSGL-1), varying in sTyr and O-glycosylation (structure and site). Using these, we identified key roles of PSGL-1 O-glycosylation and sTyr in controlling interactions with specific chemokines. Results demonstrate that sTyr positively affects CCL19 and CCL21 binding to PSGL-1 N terminus, whereas O-glycan branching and sialylation reduced binding. For murine PSGL-1, interference between PTMs is greater, attributed to proximity between the two PTMs. Using fluorescence polarization, we found sTyr is a positive determinant for some chemokines. We showed that synthetic sulfopeptides are potent in decreasing chemotaxis of human dendritic cells toward CCL19 and CCL21. Our results provide new research avenues into the interplay of PTMs regulating leukocyte/chemokine interactions.


Asunto(s)
Glicoproteínas de Membrana , Tirosina , Ratones , Animales , Humanos , Glicosilación , Tirosina/química , Glicoproteínas de Membrana/metabolismo , Unión Proteica
7.
Methods Mol Biol ; 2421: 73-89, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34870812

RESUMEN

The jawless vertebrates (lamprey and hagfish) evolved a novel adaptive immune system with many similarities to that found in the jawed vertebrates, including the production of antigen-specific circulating antibodies in response to immunization. However, the jawless vertebrates use leucine-rich repeat (LRR)-based antigen receptors termed variable lymphocyte receptors (VLRs) for immune recognition, instead of immunoglobulin (Ig)-based receptors. VLR genes are assembled in developing lymphocytes through a gene conversion-like process, in which hundreds of LRR gene segments are randomly selected as template donors to generate a large repertoire of distinct antigen receptors, similar to that found within the mammalian adaptive immune system. Here we describe the development of a robust platform using immunized lampreys (Petromyzon marinus) for generating libraries of anti-carbohydrate (anti-glycan) variable lymphocyte receptor B, or VLRBs. The anti-carbohydrate VLRBs are isolated using a yeast surface display (YSD) expression platform and enriched by binding to glycan microarrays through the anti-glycan VLRB. This enables both the initial identification and enrichment of individual yeast clones against hundreds of glycans simultaneously. Through this enrichment strategy a broad array of glycan-specific VLRs can be isolated from the YSD library. Subsequently, the bound yeast cells are directly removed from the microarray, the VLR antibody clone is sequenced, and the end product is expressed as a VLR-IgG-Fc fusion protein that can be used for ELISA, Western blotting, flow cytometry, and immunomicroscopy. Thus, by combining yeast surface display with glycan microarray technology, we have developed a rapid, efficient, and novel method for generating chimeric VLR-IgG-Fc proteins that recognize a broad array of unique glycan structures with exquisite specificity.


Asunto(s)
Lampreas , Saccharomyces cerevisiae , Animales , Inmunoglobulina G , Lampreas/genética , Lampreas/inmunología , Linfocitos , Petromyzon/inmunología , Polisacáridos , Receptores de Antígenos , Saccharomyces cerevisiae/genética , Vertebrados
8.
Proteins ; 79(4): 1267-76, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21294157

RESUMEN

Establishing a quantitative understanding of the determinants of affinity in protein-protein interactions remains challenging. For example, TEM-1/ß-lactamase inhibitor protein (BLIP) and SHV-1/BLIP are homologous ß-lactamase/ß-lactamase inhibitor protein complexes with disparate K(d) values (3 nM and 2 µM, respectively), and a single substitution, D104E in SHV-1, results in a 1000-fold enhancement in binding affinity. In TEM-1, E104 participates in a salt bridge with BLIP K74, whereas the corresponding SHV-1 D104 does not in the wild type SHV-1/BLIP co-structure. Here, we present a 1.6 Å crystal structure of the SHV-1 D104E/BLIP complex that demonstrates that this point mutation restores this salt bridge. Additionally, mutation of a neighboring residue, BLIP E73M, results in salt bridge formation between SHV-1 D104 and BLIP K74 and a 400-fold increase in binding affinity. To understand how this salt bridge contributes to complex affinity, the cooperativity between the E/K or D/K salt bridge pair and a neighboring hot spot residue (BLIP F142) was investigated using double mutant cycle analyses in the background of the E73M mutation. We find that BLIP F142 cooperatively stabilizes both interactions, illustrating how a single mutation at a hot spot position can drive large perturbations in interface stability and specificity through a cooperative interaction network.


Asunto(s)
Proteínas Bacterianas/química , Dominios y Motivos de Interacción de Proteínas , beta-Lactamasas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Estabilidad Proteica , Termodinámica , beta-Lactamasas/metabolismo
9.
Sci Adv ; 7(24)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34108208

RESUMEN

The recognition of oligomannose-type glycans in innate and adaptive immunity is elusive due to multiple closely related isomeric glycan structures. To explore the functions of oligomannoses, we developed a multifaceted approach combining mass spectrometry assignments of oligomannose substructures and the development of a comprehensive oligomannose microarray. This defined microarray encompasses both linear and branched glycans, varying in linkages, branching patterns, and phosphorylation status. With this resource, we identified unique recognition of oligomannose motifs by innate immune receptors, including DC-SIGN, L-SIGN, Dectin-2, and Langerin, broadly neutralizing antibodies against HIV gp120, N-acetylglucosamine-1-phosphotransferase, and the bacterial adhesin FimH. The results demonstrate that each protein exhibits a unique specificity to oligomannose motifs and suggest the potential to rationally design inhibitors to selectively block these protein-glycan interactions.

10.
Cell Chem Biol ; 27(9): 1207-1219.e9, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32610041

RESUMEN

Glycan recognition is typically studied using free glycans, but glycopeptide presentations represent more physiological conditions for glycoproteins. To facilitate studies of glycopeptide recognition, we developed Glyco-SPOT synthesis, which enables the parallel production of diverse glycopeptide libraries at microgram scales. The method uses a closed system for prolonged reactions required for coupling Fmoc-protected glycoamino acids, including O-, N-, and S-linked glycosides, and release conditions to prevent side reactions. To optimize reaction conditions and sample reaction progress, we devised a biopsy testing method. We demonstrate the efficient utilization of such microscale glycopeptide libraries to determine the specificity of glycan-recognizing antibodies (e.g., CTD110.6) using microarrays, enzyme specificity on-array and in-solution (e.g., ST6GalNAc1, GCNT1, and T-synthase), and binding kinetics using fluorescence polarization. We demonstrated that the glycosylation on these peptides can be expanded using glycosyltransferases both in-solution and on-array. This technology will promote the discovery of biological functions of peptide modifications by glycans.


Asunto(s)
Glicopéptidos/química , Análisis por Micromatrices/métodos , Anticuerpos/inmunología , Cromatografía Líquida de Alta Presión , Polarización de Fluorescencia , Glicopéptidos/síntesis química , Glicopéptidos/metabolismo , Glicosilación , Glicosiltransferasas/metabolismo , Biblioteca de Péptidos , Polisacáridos/inmunología , Polisacáridos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
11.
Biochemistry ; 48(39): 9185-93, 2009 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-19731932

RESUMEN

KPC beta-lactamases hydrolyze the "last resort" beta-lactam antibiotics (carbapenems) used to treat multidrug resistant infections and are compromising efforts to combat life-threatening Gram-negative bacterial infections in hospitals worldwide. Consequently, the development of novel inhibitors is essential for restoring the effectiveness of existing antibiotics. The beta-lactamase inhibitor protein (BLIP) is a competitive inhibitor of a number of class A beta-lactamases. In this study, we characterize the previously unreported interaction between KPC-2 beta-lactamase and BLIP. Biochemical results show that BLIP is an extremely potent inhibitor of KPC enzymes, binding KPC-2 and KPC-3 with subnanomolar affinity. To understand the basis of affinity and specificity in the beta-lactamase-BLIP system, the crystallographic structure of the KPC-2-BLIP complex was determined to 1.9 A resolution. Computational alanine scanning was also conducted to identify putative hot spots in the KPC-2-BLIP interface. Interestingly, the two complexes making up the KPC-2-BLIP asymmetric unit are distinct, and in one structure, the BLIP F142 loop is absent, in contrast to homologous structures in which it occupies the active site. This finding and other sources of structural plasticity appear to contribute to BLIP's promiscuity, enabling it to respond to mutations at the beta-lactamase interface. Given the continuing emergence of antibiotic resistance, the high-resolution KPC-2-BLIP structure will facilitate its use as a template for the rational design of new inhibitors of this problematic enzyme.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Inhibidores de beta-Lactamasas , beta-Lactamasas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/fisiología , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Klebsiella pneumoniae/enzimología , Datos de Secuencia Molecular , Conformación Proteica , beta-Lactamasas/fisiología
12.
Cell Chem Biol ; 26(4): 535-547.e4, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30745240

RESUMEN

The glycan ligands recognized by Siglecs, influenza viruses, and galectins, as well as many plant lectins, are not well defined. To explore their binding to asparagine (Asn)-linked N-glycans, we synthesized a library of isomeric multiantennary N-glycans that vary in terminal non-reducing sialic acid, galactose, and N-acetylglucosamine residues, as well as core fucose. We identified specific recognition of N-glycans by several plant lectins, human galectins, influenza viruses, and Siglecs, and explored the influence of sialic acid linkages and branching of the N-glycans. These results show the unique recognition of complex-type N-glycans by a wide variety of glycan-binding proteins and their abilities to distinguish isomeric structures, which provides new insights into the biological roles of these proteins and the uses of lectins in biological applications to identify glycans.


Asunto(s)
Asparagina/metabolismo , Polisacáridos/metabolismo , Proteínas/metabolismo , Animales , Asparagina/análogos & derivados , Sitios de Unión , Galectinas/metabolismo , Humanos , Isomerismo , Orthomyxoviridae/metabolismo , Lectinas de Plantas/metabolismo , Plantas/metabolismo , Polisacáridos/química , Unión Proteica , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo
13.
PLoS One ; 12(6): e0180242, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28665962

RESUMEN

Cosmc is an endoplasmic reticulum chaperone necessary for normal protein O-GalNAc glycosylation through regulation of T-synthase, its single client. Loss-of-function of Cosmc results in expression of the Tn antigen, which is associated with multiple human diseases including cancer. Despite intense interest in dysregulated expression of the Tn antigen, little is known about the structure and function of Cosmc, including domain organization, secondary structure, oligomerization, and co-factors. Limited proteolysis experiments show that Cosmc contains a structured N-terminal domain (CosmcΔ256), and biochemical characterization of CosmcΔ256 reveals wild type chaperone activity. Interestingly, CosmcE152K, which shows loss of function in vivo, exhibits wild type-like activity in vitro. Cosmc and CosmcE152K heterogeneously oligomerize and form monomeric, dimeric, trimeric, and tetrameric species, while CosmcΔ256 is predominantly monomeric as characterized by chemical crosslinking and blue native page electrophoresis. Additionally, Cosmc selectively binds divalent cations in thermal shift assays and metal binding is abrogated by the CosmcΔ256 truncation, and perturbed by the E152K mutation. Therefore, the N-terminal domain of Cosmc mediates T-synthase binding and chaperone function, whereas the C-terminal domain is necessary for oligomerization and metal binding. Our results provide new structure-function insight to Cosmc, indicate that Cosmc behaves as a modular protein and suggests points of modulation or regulation of in vivo chaperone function.


Asunto(s)
Chaperonas Moleculares/metabolismo , Secuencia de Aminoácidos , Cationes Bivalentes , Células HEK293 , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
14.
Protein Sci ; 19(10): 1996-2000, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20669180

RESUMEN

Efficient methods for quantifying dissociation constants have become increasingly important for high-throughput mutagenesis studies in the postgenomic era. However, experimentally determining binding affinity is often laborious, requires large amounts of purified protein, and utilizes specialized equipment. Recently, pulse proteolysis has been shown to be a robust and simple method to determine the dissociation constants for a protein-ligand pair based on the increase in thermodynamic stability upon ligand binding. Here, we extend this technique to determine binding affinities for a protein-protein complex involving the ß-lactamase TEM-1 and various ß-lactamase inhibitor protein (BLIP) mutants. Interaction with BLIP results in an increase in the denaturation curve midpoint, C(m), of TEM-1, which correlates with the rank order of binding affinities for several BLIP mutants. Hence, pulse proteolysis is a simple, effective method to assay for mutations that modulate binding affinity in protein-protein complexes. From a small set (n = 4) of TEM-1/BLIP mutant complexes, a linear relationship between energy of stabilization (dissociation constant) and ΔC(m) was observed. From this "calibration curve," accurate dissociation constants for two additional BLIP mutants were calculated directly from proteolysis-derived ΔC(m) values. Therefore, in addition to qualitative information, armed with knowledge of the dissociation constants from the WT protein and a limited number of mutants, accurate quantitation of binding affinities can be determined for additional mutants from pulse proteolysis. Minimal sample requirements and the suitability of impure protein preparations are important advantages that make pulse proteolysis a powerful tool for high-throughput mutagenesis binding studies.


Asunto(s)
Proteínas Bacterianas/metabolismo , Complejos Multiproteicos/química , Proteínas Mutantes/química , beta-Lactamasas/química , Algoritmos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Unión Competitiva , Electroforesis en Gel de Poliacrilamida , Cinética , Complejos Multiproteicos/metabolismo , Proteínas Mutantes/metabolismo , Mutación , Unión Proteica , Desnaturalización Proteica/efectos de los fármacos , Pliegue de Proteína/efectos de los fármacos , Urea/química , Urea/farmacología , beta-Lactamasas/metabolismo
15.
J Mol Biol ; 382(5): 1265-75, 2008 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-18775544

RESUMEN

Beta-lactamases are enzymes that catalyze the hydrolysis of beta-lactam antibiotics. beta-lactamase/beta-lactamase inhibitor protein (BLIP) complexes are emerging as a well characterized experimental model system for studying protein-protein interactions. BLIP is a 165 amino acid protein that inhibits several class A beta-lactamases with a wide range of affinities: picomolar affinity for K1; nanomolar affinity for TEM-1, SME-1, and BlaI; but only micromolar affinity for SHV-1 beta-lactamase. The large differences in affinity coupled with the availability of extensive mutagenesis data and high-resolution crystal structures for the TEM-1/BLIP and SHV-1/BLIP complexes make them attractive systems for the further development of computational design methodology. We used EGAD, a physics-based computational design program, to redesign BLIP in an attempt to increase affinity for SHV-1. Characterization of several of designs and point mutants revealed that in all cases, the mutations stabilize the interface by 10- to 1000-fold relative to wild type BLIP. The calculated changes in binding affinity for the mutants were within a mean absolute error of 0.87 kcal/mol from the experimental values, and comparison of the calculated and experimental values for a set of 30 SHV-1/BLIP complexes yielded a correlation coefficient of 0.77. Structures of the two complexes with the highest affinity, SHV-1/BLIP (E73M) and SHV-1/BLIP (E73M, S130K, S146M), are presented at 1.7 A resolution. While the predicted structures have much in common with the experimentally determined structures, they do not coincide perfectly; in particular a salt bridge between SHV-1 D104 and BLIP K74 is observed in the experimental structures, but not in the predicted design conformations. This discrepancy highlights the difficulty of modeling salt bridge interactions with a protein design algorithm that approximates side chains as discrete rotamers. Nevertheless, while local structural features of the interface were sometimes miscalculated, EGAD is globally successful in designing complexes with increased affinity.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores de beta-Lactamasas , beta-Lactamasas/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Cristalografía por Rayos X , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Cinética , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/genética , Modelos Moleculares , Complejos Multiproteicos , Mutagénesis , Ingeniería de Proteínas , Dominios y Motivos de Interacción de Proteínas , Termodinámica , beta-Lactamasas/genética
16.
J Comput Chem ; 28(14): 2378-88, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17471459

RESUMEN

Recent advances in computational protein design have established it as a viable technique for the rational generation of stable protein sequences, novel protein folds, and even enzymatic activity. We present a new and object-oriented library of code, written specifically for protein design applications in C(++), called EGAD Library. The modular fashion in which this library is written allows developers to tailor various energy functions and minimizers for a specific purpose. It also allows for the generation of novel protein design applications with a minimal amount of code investment. It is our hope that this will permit labs that have not considered protein design to apply it to their own systems, thereby increasing its potential as a tool in biology. We also present various uses of EGAD Library: in the development of Interaction Viewer, a PyMOL plug-in for viewing interactions between protein residues; in the repacking of protein cores; and in the prediction of protein-protein complex stabilities.


Asunto(s)
Algoritmos , Biblioteca de Péptidos , Proteínas/química , Programas Informáticos , Modelos Moleculares , Conformación Proteica , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA