Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 149(7): 1565-77, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22726442

RESUMEN

Secreted Wnt morphogens are signaling molecules essential for embryogenesis, pathogenesis, and regeneration and require distinct modifications for secretion, gradient formation, and activity. Whether Wnt proteins can be posttranslationally inactivated during development and homeostasis is unknown. Here we identify, through functional cDNA screening, a transmembrane protein Tiki1 that is expressed specifically in the dorsal Spemann-Mangold Organizer and is required for anterior development during Xenopus embryogenesis. Tiki1 antagonizes Wnt function in embryos and human cells via a TIKI homology domain that is conserved from bacteria to mammals and acts likely as a protease to cleave eight amino-terminal residues of a Wnt protein, resulting in oxidized Wnt oligomers that exhibit normal secretion but minimized receptor-binding capability. Our findings identify a Wnt-specific protease that controls head formation, reveal a mechanism for morphogen inactivation through proteolysis-induced oxidation-oligomerization, and suggest a role of the Wnt amino terminus in evasion of oxidizing inactivation. TIKI proteins may represent potential therapeutic targets.


Asunto(s)
Tipificación del Cuerpo , Cabeza/embriología , Proteínas de la Membrana/metabolismo , Metaloproteasas/metabolismo , Vía de Señalización Wnt , Proteínas de Xenopus/metabolismo , Xenopus/embriología , Secuencia de Aminoácidos , Animales , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/genética , Metaloproteasas/genética , Datos de Secuencia Molecular , Organizadores Embrionarios/metabolismo , Alineación de Secuencia , Xenopus/metabolismo , Proteínas de Xenopus/genética
2.
Mol Cell ; 74(1): 45-58.e7, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30846317

RESUMEN

Cells require a constant supply of fatty acids to survive and proliferate. Fatty acids incorporate into membrane and storage glycerolipids through a series of endoplasmic reticulum (ER) enzymes, but how these enzymes are regulated is not well understood. Here, using a combination of CRISPR-based genetic screens and unbiased lipidomics, we identified calcineurin B homologous protein 1 (CHP1) as a major regulator of ER glycerolipid synthesis. Loss of CHP1 severely reduces fatty acid incorporation and storage in mammalian cells and invertebrates. Mechanistically, CHP1 binds and activates GPAT4, which catalyzes the initial rate-limiting step in glycerolipid synthesis. GPAT4 activity requires CHP1 to be N-myristoylated, forming a key molecular interface between the two proteins. Interestingly, upon CHP1 loss, the peroxisomal enzyme, GNPAT, partially compensates for the loss of ER lipid synthesis, enabling cell proliferation. Thus, our work identifies a conserved regulator of glycerolipid metabolism and reveals plasticity in lipid synthesis of proliferating cells.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Retículo Endoplásmico/enzimología , Glicéridos/biosíntesis , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Lipogénesis , Células 3T3 , Aciltransferasas/genética , Aciltransferasas/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al Calcio/genética , Proliferación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/patología , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Glicerol-3-Fosfato O-Aciltransferasa/genética , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Células Jurkat , Lipogénesis/efectos de los fármacos , Lipogénesis/genética , Ratones , Ácido Palmítico/toxicidad , Unión Proteica
3.
Nat Chem Biol ; 19(1): 91-100, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36175659

RESUMEN

Bile acids are prominent host and microbiota metabolites that modulate host immunity and microbial pathogenesis. However, the mechanisms by which bile acids suppress microbial virulence are not clear. To identify the direct protein targets of bile acids in bacterial pathogens, we performed activity-guided chemical proteomic studies. In Salmonella enterica serovar Typhimurium, chenodeoxycholic acid (CDCA) most effectively inhibited the expression of virulence genes and invasion of epithelial cells and interacted with many proteins. Notably, we discovered that CDCA can directly bind and inhibit the function of HilD, an important transcriptional regulator of S. Typhimurium virulence and pathogenesis. Our characterization of bile acid-resistant HilD mutants in vitro and in S. Typhimurium infection models suggests that HilD is one of the key protein targets of anti-infective bile acids. This study highlights the utility of chemical proteomics to identify the direct protein targets of microbiota metabolites for mechanistic studies in bacterial pathogens.


Asunto(s)
Ácidos y Sales Biliares , Factores de Transcripción , Virulencia , Factores de Transcripción/genética , Ácidos y Sales Biliares/farmacología , Ácidos y Sales Biliares/metabolismo , Proteómica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Salmonella typhimurium/metabolismo , Regulación Bacteriana de la Expresión Génica
4.
Nat Chem Biol ; 19(10): 1205-1214, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37248411

RESUMEN

The microbiota generates diverse metabolites to modulate host physiology and disease, but their protein targets and mechanisms of action have not been fully elucidated. To address this challenge, we explored microbiota-derived indole metabolites and developed photoaffinity chemical reporters for proteomic studies. We identified many potential indole metabolite-interacting proteins, including metabolic enzymes, transporters, immune sensors and G protein-coupled receptors. Notably, we discovered that aromatic monoamines can bind the orphan receptor GPRC5A and stimulate ß-arrestin recruitment. Metabolomic and functional profiling also revealed specific amino acid decarboxylase-expressing microbiota species that produce aromatic monoamine agonists for GPRC5A-ß-arrestin recruitment. Our analysis of synthetic aromatic monoamine derivatives identified 7-fluorotryptamine as a more potent agonist of GPRC5A. These results highlight the utility of chemoproteomics to identify microbiota metabolite-interacting proteins and the development of small-molecule agonists for orphan receptors.


Asunto(s)
Microbiota , Proteómica , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo , Indoles
5.
Artículo en Inglés | MEDLINE | ID: mdl-33649110

RESUMEN

Enterococcus faecium, a commensal of the human intestine, has emerged as a hospital-adapted, multi-drug resistant (MDR) pathogen. Bacteriophages (phages), natural predators of bacteria, have regained attention as therapeutics to stem the rise of MDR bacteria. Despite their potential to curtail MDR E. faecium infections, the molecular events governing E. faecium-phage interactions remain largely unknown. Such interactions are important to delineate because phage selective pressure imposed on E. faecium will undoubtedly result in phage resistance phenotypes that could threaten the efficacy of phage therapy. In an effort to understand the emergence of phage resistance in E. faecium, three newly isolated lytic phages were used to demonstrate that E. faecium phage resistance is conferred through an array of cell wall-associated molecules, including secreted antigen A (SagA), enterococcal polysaccharide antigen (Epa), wall teichoic acids, capsule, and an arginine-aspartate-aspartate (RDD) protein of unknown function. We find that capsule and Epa are important for robust phage adsorption and that phage resistance mutations in sagA, epaR, and epaX enhance E. faecium susceptibility to ceftriaxone, an antibiotic normally ineffective due to its low affinity for enterococcal penicillin binding proteins. Consistent with these findings, we provide evidence that phages potently synergize with cell wall (ceftriaxone and ampicillin) and membrane-acting (daptomycin) antimicrobials to slow or completely inhibit the growth of E. faecium Our work demonstrates that the evolution of phage resistance comes with fitness defects resulting in drug sensitization and that lytic phages could serve as effective antimicrobials for the treatment of E. faecium infections.

6.
Mol Cell ; 58(1): 110-22, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25773595

RESUMEN

N-myristoylation is an essential fatty acid modification that governs the localization and activity of cell signaling enzymes, architectural proteins, and immune regulatory factors. Despite its importance in health and disease, there are currently no methods for reversing protein myristoylation in vivo. Recently, the Shigella flexneri protease IpaJ was found to cleave myristoylated glycine of eukaryotic proteins, yet the discriminatory mechanisms of substrate selection required for targeted demyristoylation have not yet been evaluated. Here, we performed global myristoylome profiling of cells treated with IpaJ under distinct physiological conditions. The protease is highly promiscuous among diverse N-myristoylated proteins in vitro but is remarkably specific to Golgi-associated ARF/ARL family GTPases during Shigella infection. Reconstitution studies revealed a mechanistic framework for substrate discrimination based on IpaJ's function as a GTPase "effector" of bacterial origin. We now propose a concerted model for IpaJ function that highlights its potential for programmable demyristoylation in vivo.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/metabolismo , Antígenos Bacterianos/metabolismo , Ácido Mirístico/metabolismo , Procesamiento Proteico-Postraduccional , Shigella flexneri/química , Factor 1 de Ribosilacion-ADP/química , Factor 1 de Ribosilacion-ADP/genética , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/química , Factores de Ribosilacion-ADP/genética , Secuencia de Aminoácidos , Antígenos Bacterianos/genética , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Ácido Mirístico/química , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Shigella flexneri/enzimología , Transducción de Señal
7.
Biochemistry ; 61(24): 2822-2834, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34989554

RESUMEN

The microbiota have emerged as an important factor in host physiology, disease, and response to therapy. These diverse microbes (bacteria, virus, fungi, and protists) encode unique functions and metabolites that regulate intraspecies and interspecies interactions. While the mechanisms of some microbiota species and metabolites have been elucidated, the diversity and abundance of different microbiota species and their associated pathways suggest many more metabolites and mechanisms of action remain to be discovered. In this Perspective, we highlight how the advances in chemical proteomics have provided new opportunities to elucidate the molecular targets of specific microbiota metabolites and reveal new mechanisms of action. The continued development of specific microbiota metabolite reporters and more precise proteomic methods should reveal new microbiota mechanisms of action, therapeutic targets, and biomarkers for a variety of human diseases.


Asunto(s)
Microbiota , Virus , Humanos , Proteómica/métodos , Microbiota/fisiología , Hongos
8.
Nat Chem Biol ; 16(1): 95-103, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31740807

RESUMEN

Microbiota generates millimolar concentrations of short-chain fatty acids (SCFAs) that can modulate host metabolism, immunity and susceptibility to infection. Butyrate in particular can function as a carbon source and anti-inflammatory metabolite, but the mechanism by which it inhibits pathogen virulence has been elusive. Using chemical proteomics, we found that several virulence factors encoded by Salmonella pathogenicity island-1 (SPI-1) are acylated by SCFAs. Notably, a transcriptional regulator of SPI-1, HilA, was acylated on several key lysine residues. Subsequent incorporation of stable butyryl-lysine analogs using CRISPR-Cas9 gene editing and unnatural amino acid mutagenesis revealed that site-specific modification of HilA impacts its genomic occupancy, expression of SPI-1 genes and attenuates Salmonella enterica serovar Typhimurium invasion of epithelial cells, as well as dissemination in vivo. Moreover, a multiple-site HilA lysine acylation mutant strain of S. Typhimurium was resistant to butyrate inhibition ex vivo and microbiota attenuation in vivo. Our results suggest that prominent microbiota-derived metabolites may directly acylate virulence factors to inhibit microbial pathogenesis in vivo.


Asunto(s)
Ácidos Grasos/metabolismo , Regulación Bacteriana de la Expresión Génica , Islas Genómicas , Salmonella typhimurium/metabolismo , Virulencia , Animales , Arginina/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Butiratos/química , Sistemas CRISPR-Cas , Genoma Bacteriano , Genómica , Lisina/química , Ratones , Ratones Endogámicos C57BL , Mutagénesis , Mutación , Proteómica/métodos , Salmonella typhimurium/patogenicidad , Transactivadores/metabolismo , Factores de Virulencia/metabolismo
9.
Trends Biochem Sci ; 42(11): 887-898, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28927699

RESUMEN

The intestine is a highly complex ecosystem where many bacterial species interact with each other and host cells to influence animal physiology and susceptibility to pathogens. Genomic methods have provided a broad framework for understanding how alterations in microbial communities are associated with host physiology and infection, but the biochemical mechanisms of specific intestinal bacterial species are only emerging. In this review, we focus on recent studies that have characterized the biochemical mechanisms by which intestinal bacteria interact with other bacteria and host pathways to restrict pathogen infection. Understanding the biochemical mechanisms of intestinal microbiota function should provide new opportunities for therapeutic development towards a variety of infectious diseases.


Asunto(s)
Bacterias/metabolismo , Bacterias/patogenicidad , Infecciones Bacterianas/prevención & control , Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Interacciones Microbianas , Animales , Bacterias/genética , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/microbiología , Humanos
10.
Appl Environ Microbiol ; 87(18): e0084421, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34232061

RESUMEN

Enterococcus faecium is a ubiquitous Gram-positive bacterium that has been recovered from the environment, food, and microbiota of mammals. Commensal strains of E. faecium can confer beneficial effects on host physiology and immunity, but antibiotic usage has afforded antibiotic-resistant and pathogenic isolates from livestock and humans. However, the dissection of E. faecium functions and mechanisms has been restricted by inefficient gene-editing methods. To address these limitations, here, we report that the expression of E. faecium RecT recombinase significantly improves the efficiency of recombineering technologies in both commensal and antibiotic-resistant strains of E. faecium and other Enterococcus species such as E. durans and E. hirae. Notably, the expression of RecT in combination with clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 and guide RNAs (gRNAs) enabled highly efficient scarless single-stranded DNA recombineering to generate specific gene-editing mutants in E. faecium. Moreover, we demonstrate that E. faecium RecT expression facilitated chromosomal insertions of double-stranded DNA templates encoding antibiotic-selectable markers to generate gene deletion mutants. As a further proof of principle, we use CRISPR-Cas9-mediated recombineering to knock out both sortase A genes in E. faecium for downstream functional characterization. The general RecT-mediated recombineering methods described here should significantly enhance genetic studies of E. faecium and other closely related species for functional and mechanistic studies. IMPORTANCE Enterococcus faecium is widely recognized as an emerging public health threat with the rise of drug resistance and nosocomial infections. Nevertheless, commensal Enterococcus strains possess beneficial health functions in mammals to upregulate host immunity and prevent microbial infections. This functional dichotomy of Enterococcus species and strains highlights the need for in-depth studies to discover and characterize the genetic components underlying its diverse activities. However, current genetic engineering methods in E. faecium still require passive homologous recombination from plasmid DNA. This involves the successful cloning of multiple homologous fragments into a plasmid, introducing the plasmid into E. faecium, and screening for double-crossover events that can collectively take up to multiple weeks to perform. To alleviate these challenges, we show that RecT recombinase enables the rapid and efficient integration of mutagenic DNA templates to generate substitutions, deletions, and insertions in the genomic DNA of E. faecium. These improved recombineering methods should facilitate functional and mechanistic studies of Enterococcus.


Asunto(s)
Proteínas Bacterianas/genética , Enterococcus faecium/genética , Edición Génica , Recombinasas/genética , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Streptococcus pyogenes/genética
11.
Nat Chem Biol ; 15(3): 259-268, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30643282

RESUMEN

Interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) have emerged as important innate immune effectors that prevent diverse virus infections in vertebrates. However, the cellular mechanisms and live-cell imaging of these small membrane proteins have been challenging to evaluate during viral entry of mammalian cells. Using CRISPR-Cas9-mediated IFITM-mutant cell lines, we demonstrate that human IFITM1, IFITM2 and IFITM3 act cooperatively and function in a dose-dependent fashion in interferon-stimulated cells. Through site-specific fluorophore tagging and live-cell imaging studies, we show that IFITM3 is on endocytic vesicles that fuse with incoming virus particles and enhances the trafficking of this pathogenic cargo to lysosomes. IFITM3 trafficking is specific to restricted viruses, requires S-palmitoylation and is abrogated with loss-of-function mutants. The site-specific protein labeling and live-cell imaging approaches described here should facilitate the functional analysis of host factors involved in pathogen restriction as well as their mechanisms of regulation.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Vesículas Transportadoras/fisiología , Células A549 , Animales , Antígenos de Diferenciación/metabolismo , Antivirales , Endosomas/fisiología , Células HeLa , Humanos , Lisosomas/fisiología , Imagen Óptica/métodos , Transporte de Proteínas , Virión/patogenicidad , Internalización del Virus
12.
Biochemistry ; 59(46): 4470-4480, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33136372

RESUMEN

Peptidoglycan is a vital component of the bacterial cell wall, and its dynamic remodeling by NlpC/p60 hydrolases is crucial for proper cell division and survival. Beyond these essential functions, we previously discovered that Enterococcus species express and secrete the NlpC/p60 hydrolase-secreted antigen A (SagA), whose catalytic activity can modulate host immune responses in animal models. However, the localization and peptidoglycan hydrolase activity of SagA in Enterococcus was still unclear. In this study, we show that SagA contributes to a triseptal structure in dividing cells of enterococci and localizes to sites of cell division through its N-terminal coiled-coil domain. Using molecular modeling and site-directed mutagenesis, we identify amino acid residues within the SagA-NlpC/p60 domain that are crucial for catalytic activity and potential substrate binding. Notably, these studies revealed that SagA may function via a catalytic Cys-His dyad instead of the predicted Cys-His-His triad, which is conserved in SagA orthologs from other Enterococcus species. Our results provide key additional insight into peptidoglycan remodeling in Enterococcus by SagA NlpC/p60 hydrolases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enterococcus/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Proteínas Bacterianas/genética , Dominio Catalítico , División Celular , Enterococcus/citología , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , N-Acetil Muramoil-L-Alanina Amidasa/genética , Peptidoglicano/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Relación Estructura-Actividad
13.
Chembiochem ; 21(1-2): 19-32, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31730246

RESUMEN

The advances made in bioorthogonal chemistry and the development of chemical reporters have afforded new strategies to explore the targets and functions of specific metabolites in biology. These metabolite chemical reporters have been applied to diverse classes of bacteria including Gram-negative, Gram-positive, mycobacteria, and more complex microbiota communities. Herein we summarize the development and application of metabolite chemical reporters to study fundamental pathways in bacteria as well as microbiota mechanisms in health and disease.


Asunto(s)
Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/metabolismo , Proteínas/metabolismo , Humanos , Microbiota
14.
Curr Top Microbiol Immunol ; 420: 93-110, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30128826

RESUMEN

Protein fatty-acylation describes the covalent modification of protein with fatty acids during or after translation. Chemical proteomic profiling methods have provided new opportunities to explore protein fatty-acylation in microbial pathogens. Recent studies suggest that protein fatty-acylation is essential to survival and pathogenesis of eukaryotic pathogens such as parasites and fungi. Moreover, fatty-acylation in host cells can be exploited or manipulated by pathogenic bacteria. Herein, we first review the prevalent classes of fatty-acylation in microbial pathogens and the chemical proteomic profiling methods for their global analysis. We then summarize recent fatty-acylation profiling studies performed in eukaryotic pathogens and during bacterial infections, highlighting how they contribute to functional characterization of fatty-acylation under these contexts.


Asunto(s)
Ácidos Grasos/metabolismo , Infecciones/microbiología , Proteínas/análisis , Proteínas/metabolismo , Proteómica/métodos , Acilación , Animales , Infecciones/metabolismo , Proteínas/química
15.
Nat Chem Biol ; 13(3): 302-308, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28092360

RESUMEN

ADP-ribosylation is a post-translational modification that is known to be involved in cellular homeostasis and stress but has been challenging to analyze biochemically. To facilitate the detection of ADP-ribosylated proteins, we show that an alkyne-adenosine analog, N6-propargyl adenosine (N6pA), is metabolically incorporated in mammalian cells and enables fluorescence detection and proteomic analysis of ADP-ribosylated proteins. Notably, our analysis of N6pA-labeled proteins that are upregulated by oxidative stress revealed differential ADP-ribosylation of small GTPases. We discovered that oxidative stress induced ADP-ribosylation of Hras on Cys181 and Cys184 in the C-terminal hypervariable region, which are normally S-fatty-acylated. Downstream Hras signaling is impaired by ADP-ribosylation during oxidative stress, but is rescued by ADP-ribosyltransferase inhibitors. Our study demonstrates that ADP-ribosylation of small GTPases not only is mediated by bacterial toxins but is endogenously regulated in mammalian cells. N6pA provides a useful tool to characterize ADP-ribosylated proteins and their regulatory mechanisms in cells.


Asunto(s)
Adenosina Difosfato/metabolismo , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Estrés Oxidativo , Proteómica , Células Cultivadas , Células HEK293 , Humanos , Estructura Molecular
16.
Nature ; 496(7443): 110-3, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23552949

RESUMEN

The Sir2 family of enzymes or sirtuins are known as nicotinamide adenine dinucleotide (NAD)-dependent deacetylases and have been implicated in the regulation of transcription, genome stability, metabolism and lifespan. However, four of the seven mammalian sirtuins have very weak deacetylase activity in vitro. Here we show that human SIRT6 efficiently removes long-chain fatty acyl groups, such as myristoyl, from lysine residues. The crystal structure of SIRT6 reveals a large hydrophobic pocket that can accommodate long-chain fatty acyl groups. We demonstrate further that SIRT6 promotes the secretion of tumour necrosis factor-α (TNF-α) by removing the fatty acyl modification on K19 and K20 of TNF-α. Protein lysine fatty acylation has been known to occur in mammalian cells, but the function and regulatory mechanisms of this modification were unknown. Our data indicate that protein lysine fatty acylation is a novel mechanism that regulates protein secretion. The discovery of SIRT6 as an enzyme that controls protein lysine fatty acylation provides new opportunities to investigate the physiological function of a protein post-translational modification that has been little studied until now.


Asunto(s)
Ácidos Grasos/química , Ácidos Grasos/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Sirtuinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Acilación , Sitios de Unión , Cristalografía por Rayos X , Humanos , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Lisina/química , Procesamiento Proteico-Postraduccional , Sirtuinas/química , Factor de Necrosis Tumoral alfa/química
17.
Proc Natl Acad Sci U S A ; 113(16): 4302-7, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27044110

RESUMEN

Fatty acylation of cysteine residues provides spatial and temporal control of protein function in cells and regulates important biological pathways in eukaryotes. Although recent methods have improved the detection and proteomic analysis of cysteine fatty (S-fatty) acylated proteins, understanding how specific sites and quantitative levels of this posttranslational modification modulate cellular pathways are still challenging. To analyze the endogenous levels of protein S-fatty acylation in cells, we developed a mass-tag labeling method based on hydroxylamine-sensitivity of thioesters and selective maleimide-modification of cysteines, termed acyl-PEG exchange (APE). We demonstrate that APE enables sensitive detection of protein S-acylation levels and is broadly applicable to different classes of S-palmitoylated membrane proteins. Using APE, we show that endogenous interferon-induced transmembrane protein 3 is S-fatty acylated on three cysteine residues and site-specific modification of highly conserved cysteines are crucial for the antiviral activity of this IFN-stimulated immune effector. APE therefore provides a general and sensitive method for analyzing the endogenous levels of protein S-fatty acylation and should facilitate quantitative studies of this regulated and dynamic lipid modification in biological systems.


Asunto(s)
Cisteína/metabolismo , Ácidos Grasos/metabolismo , Espectrometría de Masas/métodos , Proteínas de la Membrana/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Coloración y Etiquetado/métodos , Acilación , Animales , Ratones
18.
J Proteome Res ; 17(5): 1907-1922, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29575903

RESUMEN

S-Fatty-acylation is the covalent attachment of long chain fatty acids, predominately palmitate (C16:0, S-palmitoylation), to cysteine (Cys) residues via a thioester linkage on proteins. This post-translational and reversible lipid modification regulates protein function and localization in eukaryotes and is important in mammalian physiology and human diseases. While chemical labeling methods have improved the detection and enrichment of S-fatty-acylated proteins, mapping sites of modification and characterizing the endogenously attached fatty acids are still challenging. Here, we describe the integration and optimization of fatty acid chemical reporter labeling with hydroxylamine-mediated enrichment of S-fatty-acylated proteins and direct tagging of modified Cys residues to selectively map lipid modification sites. This afforded improved enrichment and direct identification of many protein S-fatty-acylation sites compared to previously described methods. Notably, we directly identified the S-fatty-acylation sites of IFITM3, an important interferon-stimulated inhibitor of virus entry, and we further demonstrated that the highly conserved Cys residues are primarily modified by palmitic acid. The methods described here should facilitate the direct analysis of protein S-fatty-acylation sites and their endogenously attached fatty acids in diverse cell types and activation states important for mammalian physiology and diseases.


Asunto(s)
Cisteína/metabolismo , Lipoilación , Ácido Palmítico/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Acilación , Animales , Sitios de Unión , Ácidos Grasos/metabolismo , Humanos , Hidroxilamina , Espectrometría de Masas , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo , Coloración y Etiquetado
19.
J Biol Chem ; 292(52): 21517-21526, 2017 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-29079573

RESUMEN

Interferon-induced transmembrane protein 3 (IFITM3) is a cellular endosome- and lysosome-localized protein that restricts numerous virus infections. IFITM3 is activated by palmitoylation, a lipid posttranslational modification. Palmitoylation of proteins is primarily mediated by zinc finger DHHC domain-containing palmitoyltransferases (ZDHHCs), but which members of this enzyme family can modify IFITM3 is not known. Here, we screened a library of human cell lines individually lacking ZDHHCs 1-24 and found that IFITM3 palmitoylation and its inhibition of influenza virus infection remained strong in the absence of any single ZDHHC, suggesting functional redundancy of these enzymes in the IFITM3-mediated antiviral response. In an overexpression screen with 23 mammalian ZDHHCs, we unexpectedly observed that more than half of the ZDHHCs were capable of increasing IFITM3 palmitoylation with ZDHHCs 3, 7, 15, and 20 having the greatest effect. Among these four enzymes, ZDHHC20 uniquely increased IFITM3 antiviral activity when both proteins were overexpressed. ZDHHC20 colocalized extensively with IFITM3 at lysosomes unlike ZDHHCs 3, 7, and 15, which showed a defined perinuclear localization pattern, suggesting that the location at which IFITM3 is palmitoylated may influence its activity. Unlike knock-out of individual ZDHHCs, siRNA-mediated knockdown of both ZDHHC3 and ZDHHC7 in ZDHHC20 knock-out cells decreased endogenous IFITM3 palmitoylation. Overall, our results demonstrate that multiple ZDHHCs can palmitoylate IFITM3 to ensure a robust antiviral response and that ZDHHC20 may serve as a particularly useful tool for understanding and enhancing IFITM3 activity.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Células A549 , Acetiltransferasas , Aciltransferasas/fisiología , Antivirales/metabolismo , Células HEK293 , Humanos , Inmunidad Innata/fisiología , Interferones/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Lipoilación , Orthomyxoviridae/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Transporte de Proteínas
20.
PLoS Pathog ; 11(5): e1004908, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25970403

RESUMEN

Cryptococcus neoformans is an opportunistic yeast that kills over 625,000 people yearly through lethal meningitis. Host phagocytes serve as the first line of defense against this pathogen, but fungal engulfment and subsequent intracellular proliferation also correlate with poor patient outcome. Defining the interactions of this facultative intracellular pathogen with host phagocytes is key to understanding the latter's opposing roles in infection and how they contribute to fungal latency, dissemination, and virulence. We used high-content imaging and a human monocytic cell line to screen 1,201 fungal mutants for strains with altered host interactions and identified multiple genes that influence fungal adherence and phagocytosis. One of these genes was PFA4, which encodes a protein S-acyl transferase (PAT), one of a family of DHHC domain-containing proteins that catalyzes lipid modification of proteins. Deletion of PFA4 caused dramatic defects in cryptococcal morphology, stress tolerance, and virulence. Bioorthogonal palmitoylome-profiling identified Pfa4-specific protein substrates involved in cell wall synthesis, signal transduction, and membrane trafficking responsible for these phenotypic alterations. We demonstrate that a single PAT is responsible for the modification of a subset of proteins that are critical in cryptococcal pathogenesis. Since several of these palmitoylated substrates are conserved in other pathogenic fungi, protein palmitoylation represents a potential avenue for new antifungal therapeutics.


Asunto(s)
Aciltransferasas/metabolismo , Criptococosis/metabolismo , Cryptococcus neoformans/fisiología , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno , Monocitos/microbiología , Procesamiento Proteico-Postraduccional , Acilación , Aciltransferasas/genética , Adhesión Celular , Línea Celular , Pared Celular/inmunología , Pared Celular/metabolismo , Pared Celular/patología , Criptococosis/inmunología , Criptococosis/microbiología , Criptococosis/patología , Cryptococcus neoformans/citología , Cryptococcus neoformans/enzimología , Cryptococcus neoformans/patogenicidad , Proteínas Fúngicas/genética , Eliminación de Gen , Humanos , Meningitis Criptocócica/inmunología , Meningitis Criptocócica/metabolismo , Meningitis Criptocócica/microbiología , Meningitis Criptocócica/patología , Viabilidad Microbiana , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/patología , Mutación , Fagocitosis , Transducción de Señal , Estrés Fisiológico , Especificidad por Sustrato , Virulencia , Latencia del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA