Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
EMBO J ; 37(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29712715

RESUMEN

MicroRNAs (miRNAs) repress translation of target mRNAs by associating with Argonaute (Ago) proteins to form the RNA-induced silencing complex (RISC), underpinning a powerful mechanism for fine-tuning protein expression. Specific miRNAs are required for NMDA receptor (NMDAR)-dependent synaptic plasticity by modulating the translation of proteins involved in dendritic spine morphogenesis or synaptic transmission. However, it is unknown how NMDAR stimulation stimulates RISC activity to rapidly repress translation of synaptic proteins. We show that NMDAR stimulation transiently increases Akt-dependent phosphorylation of Ago2 at S387, which causes an increase in binding to GW182 and a rapid increase in translational repression of LIMK1 via miR-134. Furthermore, NMDAR-dependent down-regulation of endogenous LIMK1 translation in dendrites and dendritic spine shrinkage requires phospho-regulation of Ago2 at S387. AMPAR trafficking and hippocampal LTD do not involve S387 phosphorylation, defining this mechanism as a specific pathway for structural plasticity. This work defines a novel mechanism for the rapid transduction of NMDAR stimulation into miRNA-mediated translational repression to control dendritic spine morphology.


Asunto(s)
Proteínas Argonautas/genética , Quinasas Lim/genética , MicroARNs/genética , Receptores de N-Metil-D-Aspartato/genética , Animales , Espinas Dendríticas/metabolismo , Espinas Dendríticas/fisiología , Hipocampo/metabolismo , Hipocampo/fisiología , Humanos , Plasticidad Neuronal , Neuronas/metabolismo , Fosforilación , Ratas , Transducción de Señal/genética , Transmisión Sináptica/genética
2.
J Neurosci ; 37(46): 11127-11139, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29030434

RESUMEN

Appropriate excitatory/inhibitory (E/I) balance is essential for normal cortical function and is altered in some psychiatric disorders, including autism spectrum disorders (ASDs). Cell-autonomous molecular mechanisms that control the balance of excitatory and inhibitory synapse function remain poorly understood; no proteins that regulate excitatory and inhibitory synapse strength in a coordinated reciprocal manner have been identified. Using super-resolution imaging, electrophysiology, and molecular manipulations, we show that cadherin-10, encoded by CDH10 within the ASD risk locus 5p14.1, maintains both excitatory and inhibitory synaptic scaffold structure in cultured cortical neurons from rats of both sexes. Cadherin-10 localizes to both excitatory and inhibitory synapses in neocortex, where it is organized into nanoscale puncta that influence the size of their associated PSDs. Knockdown of cadherin-10 reduces excitatory but increases inhibitory synapse size and strength, altering the E/I ratio in cortical neurons. Furthermore, cadherin-10 exhibits differential participation in complexes with PSD-95 and gephyrin, which may underlie its role in maintaining the E/I ratio. Our data provide a new mechanism whereby a protein encoded by a common ASD risk factor controls E/I ratios by regulating excitatory and inhibitory synapses in opposing directions.SIGNIFICANCE STATEMENT The correct balance between excitatory/inhibitory (E/I) is crucial for normal brain function and is altered in psychiatric disorders such as autism. However, the molecular mechanisms that underlie this balance remain elusive. To address this, we studied cadherin-10, an adhesion protein that is genetically linked to autism and understudied at the cellular level. Using a combination of advanced microscopy techniques and electrophysiology, we show that cadherin-10 forms nanoscale puncta at excitatory and inhibitory synapses, maintains excitatory and inhibitory synaptic structure, and is essential for maintaining the correct balance between excitation and inhibition in neuronal dendrites. These findings reveal a new mechanism by which E/I balance is controlled in neurons and may bear relevance to synaptic dysfunction in autism.


Asunto(s)
Cadherinas/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Sinapsis/metabolismo , Animales , Células Cultivadas , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Unión Proteica/fisiología , Ratas , Ratas Sprague-Dawley
3.
J Biol Chem ; 292(23): 9774-9786, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28404816

RESUMEN

MicroRNAs (miRNAs) are important regulators of localized mRNA translation in neuronal dendrites. The presence of RNA-induced silencing complex proteins in these compartments and the dynamic miRNA expression changes that occur in response to neuronal stimulation highlight their importance in synaptic plasticity. Previously, we demonstrated a novel interaction between the major RNA-induced silencing complex component Argounaute-2 (Ago2) and the BAR (bin/amphiphysin/rvs) domain protein PICK1. PICK1 recruits Ago2 to recycling endosomes in dendrites, where it inhibits miRNA-mediated translational repression. Chemical induction of long-term depression via NMDA receptor activation causes the dissociation of Ago2 from PICK1 and a consequent increase in dendritic miRNA-mediated gene silencing. The mechanism that underlies the regulation of PICK1-Ago2 binding is unknown. In this study, we demonstrate that the PICK1-Ago2 interaction is directly sensitive to Ca2+ ions so that high [Ca2+]free reduces PICK1 binding to Ago2. Mutating a stretch of C-terminal Ca2+-binding residues in PICK1 results in a complete block of NMDA-induced PICK1-Ago2 disassociation in cortical neurons. Furthermore, the same mutant also blocks NMDA-stimulated miRNA-mediated gene silencing. This study defines a novel mechanism whereby elevated [Ca2+] induced by NMDA receptor activation modulates Ago2 and miRNA activity via PICK1. Our work suggests a Ca2+-dependent process to regulate miRNA activity in neurons in response to the induction of long-term depression.


Asunto(s)
Señalización del Calcio/fisiología , Proteínas Portadoras/metabolismo , Dendritas/metabolismo , Depresión Sináptica a Largo Plazo/fisiología , MicroARNs/metabolismo , Proteínas Nucleares/metabolismo , Biosíntesis de Proteínas/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Calcio/metabolismo , Proteínas Portadoras/genética , Corteza Cerebral/metabolismo , Proteínas del Citoesqueleto , Células HEK293 , Humanos , MicroARNs/genética , Proteínas Nucleares/genética , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/genética
4.
J Biol Chem ; 292(49): 20173-20183, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29046349

RESUMEN

Brain ischemia causes oxygen and glucose deprivation (OGD) in neurons, triggering a cascade of events leading to synaptic accumulation of glutamate. Excessive activation of glutamate receptors causes excitotoxicity and delayed cell death in vulnerable neurons. Following global cerebral ischemia, hippocampal CA1 pyramidal neurons are more vulnerable to injury than their cortical counterparts, but the mechanisms that underlie this difference are unclear. Signaling via Rho-family small GTPases, their upstream guanine nucleotide exchange factors, and GTPase-activating proteins (GAPs) is differentially dysregulated in response to OGD/ischemia in hippocampal and cortical neurons. Increased Rac1 activity caused by OGD/ischemia contributes to neuronal death in hippocampal neurons via diverse effects on NADPH oxidase activity and dendritic spine morphology. The Rac1 guanine nucleotide exchange factor Tiam1 mediates an OGD-induced increase in Rac1 activity in hippocampal neurons; however, the identity of an antagonistic GAP remains elusive. Here we show that the Rac1 GAP breakpoint cluster region (BCR) associates with NMDA receptors (NMDARs) along with Tiam1 and that this protein complex is more abundant in hippocampal compared with cortical neurons. Although total BCR is similar in the two neuronal types, BCR is more active in hippocampal compared with cortical neurons. OGD causes an NMDAR- and Ca2+-permeable AMPAR-dependent deactivation of BCR in hippocampal but not cortical neurons. BCR knockdown occludes OGD-induced Rac1 activation in hippocampal neurons. Furthermore, disrupting the Tiam1-NMDAR interaction with a fragment of Tiam1 blocks OGD-induced Tiam1 activation but has no effect on the deactivation of BCR. This work identifies BCR as a critical player in Rac1 regulation during OGD in hippocampal neurons.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Regulación de la Expresión Génica , Glucosa/deficiencia , Hipoxia , Neuronas/metabolismo , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Proteínas Activadoras de GTPasa/genética , Glucosa/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Neuronas/citología , Oxígeno/metabolismo , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/metabolismo , Proteína de Unión al GTP rac1
5.
Semin Cell Dev Biol ; 27: 14-22, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24342448

RESUMEN

AMPA receptors are the main excitatory neurotransmitter receptor in the brain, and hence regulating the number or properties of synaptic AMPA receptors brings about critical changes in synaptic transmission. Synaptic plasticity is thought to underlie learning and memory, and can be brought about by decreasing or increasing the number of AMPA receptors localised to synaptic sites by precisely regulating AMPA receptor trafficking. AMPA receptors are tetrameric assemblies of subunits GluA1-4, and the vast majority are GluA1/2 and GluA2/3 heteromers. The inclusion of GluA2 subunit is critical because it renders the AMPA receptor channel impermeable to Ca(2+) ions. The vast majority of synaptic AMPA receptors in the brain contain GluA2, but relatively recent discoveries indicate that an increasing number of specific forms of synaptic plasticity involve not only an alteration of the number of synaptic AMPA receptors, but also changes to their GluA2 content. The resulting change in AMPA receptor Ca(2+) permeability clearly has profound consequences for synaptic transmission and intracellular signalling events. The subunit-specific trafficking mechanisms that cause such changes represent an emerging field of research with implications for an increasing number of physiological or pathological situations, and are the topic of this review.


Asunto(s)
Receptores AMPA/metabolismo , Sinapsis/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Permeabilidad de la Membrana Celular , Endosomas/metabolismo , Regulación de la Expresión Génica , Humanos , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Receptores AMPA/genética
6.
EMBO Rep ; 15(5): 548-56, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24723684

RESUMEN

MicroRNAs fine-tune gene expression by inhibiting the translation of mRNA targets. Argonaute (Ago) proteins are critical mediators of microRNA-induced post-transcriptional silencing and have been shown to associate with endosomal compartments, but the molecular mechanisms that underlie this process are unclear, especially in neurons. Here, we report a novel interaction between Ago2 and the BAR-domain protein, PICK1. We show that PICK1 promotes Ago2 localization at endosomal compartments in neuronal dendrites and inhibits Ago2 function in translational repression following neuronal stimulation. We propose that PICK1 provides a link between activity-dependent endosomal trafficking and local regulation of translation in neurons.


Asunto(s)
Proteínas Argonautas/metabolismo , Proteínas Portadoras/metabolismo , Dendritas/metabolismo , Endosomas/metabolismo , Proteínas Nucleares/metabolismo , Animales , Células COS , Proteínas Portadoras/genética , Células Cultivadas , Chlorocebus aethiops , Dendritas/genética , Regulación de la Expresión Génica , Células HEK293 , Humanos , Quinasas Lim/biosíntesis , Quinasas Lim/genética , Ratones , MicroARNs/genética , Proteínas Nucleares/genética , Biosíntesis de Proteínas/genética , Interferencia de ARN , ARN Interferente Pequeño , Receptores de N-Metil-D-Aspartato/biosíntesis , Receptores de N-Metil-D-Aspartato/metabolismo
7.
J Biol Chem ; 289(8): 4644-51, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24403083

RESUMEN

Brain ischemia occurs when the blood supply to the brain is interrupted, leading to oxygen and glucose deprivation (OGD). This triggers a cascade of events causing a synaptic accumulation of glutamate. Excessive activation of glutamate receptors results in excitotoxicity and delayed cell death in vulnerable neurons. Following global cerebral ischemia, hippocampal CA1 pyramidal neurons are more vulnerable to injury than their cortical counterparts. The mechanisms that underlie this difference are unclear. Cultured hippocampal neurons respond to OGD with a rapid internalization of AMPA receptor (AMPAR) subunit GluA2, resulting in a switch from GluA2-containing Ca(2+)-impermeable receptors to GluA2-lacking Ca(2+)-permeable subtypes (CP-AMPARs). GluA2 internalization is a critical component of OGD-induced cell death in hippocampal neurons. It is unknown how AMPAR trafficking is affected in cortical neurons following OGD. Here, we show that cultured cortical neurons are resistant to an OGD insult that causes cell death in hippocampal neurons. GluA1 is inserted at the plasma membrane in both cortical and hippocampal neurons in response to OGD. In contrast, OGD causes a rapid endocytosis of GluA2 in hippocampal neurons, which is absent in cortical neurons. These data demonstrate that populations of neurons with different vulnerabilities to OGD recruit distinct cell biological mechanisms in response to insult, and that a crucial aspect of the mechanism leading to OGD-induced cell death is absent in cortical neurons. This strongly suggests that the absence of OGD-induced GluA2 trafficking contributes to the relatively low vulnerability of cortical neurons to ischemia.


Asunto(s)
Glucosa/deficiencia , Hipocampo/patología , Neuronas/metabolismo , Oxígeno/farmacología , Subunidades de Proteína/metabolismo , Receptores AMPA/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Endocitosis/efectos de los fármacos , L-Lactato Deshidrogenasa/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Transporte de Proteínas/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo
8.
EMBO J ; 30(4): 719-30, 2011 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-21252856

RESUMEN

Activity-dependent remodelling of dendritic spines is essential for neural circuit development and synaptic plasticity, but the precise molecular mechanisms that regulate this process are unclear. Activators of Arp2/3-mediated actin polymerisation are required for spine enlargement; however, during long-term depression (LTD), spines shrink via actin depolymerisation and Arp2/3 inhibitors in this process have not yet been identified. Here, we show that PICK1 regulates spine size in hippocampal neurons via inhibition of the Arp2/3 complex. PICK1 knockdown increases spine size, whereas PICK1 overexpression reduces spine size. NMDA receptor activation results in spine shrinkage, which is blocked by PICK1 knockdown or overexpression of a PICK1 mutant that cannot bind Arp2/3. Furthermore, we show that PICK1-Arp2/3 interactions are required for functional hippocampal LTD. This work demonstrates that PICK1 is a novel regulator of spine dynamics. Via Arp2/3 inhibition, PICK1 has complementary yet distinct roles during LTD to regulate AMPA receptor trafficking and spine size, and therefore functions as a crucial factor in both structural and functional plasticity.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/antagonistas & inhibidores , Proteínas Portadoras/fisiología , Espinas Dendríticas/fisiología , Plasticidad Neuronal , Proteínas Nucleares/fisiología , Sinapsis/fisiología , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Animales , Animales Recién Nacidos , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Proteínas del Citoesqueleto , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Embrión de Mamíferos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Tamaño de los Orgánulos/efectos de los fármacos , Tamaño de los Orgánulos/fisiología , ARN Interferente Pequeño/farmacología , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
9.
J Cell Sci ; 126(Pt 17): 3873-83, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23843614

RESUMEN

Astrocytes exhibit a complex, branched morphology, allowing them to functionally interact with numerous blood vessels, neighboring glial processes and neuronal elements, including synapses. They also respond to central nervous system (CNS) injury by a process known as astrogliosis, which involves morphological changes, including cell body hypertrophy and thickening of major processes. Following severe injury, astrocytes exhibit drastically reduced morphological complexity and collectively form a glial scar. The mechanistic details behind these morphological changes are unknown. Here, we investigate the regulation of the actin-nucleating Arp2/3 complex in controlling dynamic changes in astrocyte morphology. In contrast to other cell types, Arp2/3 inhibition drives the rapid expansion of astrocyte cell bodies and major processes. This intervention results in a reduced morphological complexity of astrocytes in both dissociated culture and in brain slices. We show that this expansion requires functional myosin II downstream of ROCK and RhoA. Knockdown of the Arp2/3 subunit Arp3 or the Arp2/3 activator N-WASP by siRNA also results in cell body expansion and reduced morphological complexity, whereas depleting WAVE2 specifically reduces the branching complexity of astrocyte processes. By contrast, knockdown of the Arp2/3 inhibitor PICK1 increases astrocyte branching complexity. Furthermore, astrocyte expansion induced by ischemic conditions is delayed by PICK1 knockdown or N-WASP overexpression. Our findings identify a new morphological outcome for Arp2/3 activation in restricting rather than promoting outwards movement of the plasma membrane in astrocytes. The Arp2/3 regulators PICK1, and N-WASP and WAVE2 function antagonistically to control the complexity of astrocyte branched morphology, and this mechanism underlies the morphological changes seen in astrocytes during their response to pathological insult.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Astrocitos/metabolismo , Proteínas Portadoras/metabolismo , Sistema Nervioso Central/metabolismo , Proteínas Nucleares/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Amidas/farmacología , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Proteínas Portadoras/genética , Células Cultivadas , Colforsina/farmacología , Inhibidores Enzimáticos/farmacología , Fibroblastos , Células HEK293 , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Ratones , Miosina Tipo II/antagonistas & inhibidores , Miosina Tipo II/metabolismo , Proteínas Nucleares/genética , Piridinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño , Ratas , Tiazoles/farmacología , Tionas/farmacología , Uracilo/análogos & derivados , Uracilo/farmacología , Vasodilatadores/farmacología , Proteína Neuronal del Síndrome de Wiskott-Aldrich/genética , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/metabolismo
10.
Sci Rep ; 14(1): 3066, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321143

RESUMEN

MicroRNAs (miRNAs) repress translation of target mRNAs by associating with Argonaute (Ago) proteins in the RNA-induced silencing complex (RISC) to modulate protein expression. Specific miRNAs are required for NMDA receptor (NMDAR)-dependent synaptic plasticity by repressing the translation of proteins involved in dendritic spine morphogenesis. Rapid NMDAR-dependent silencing of Limk1 is essential for spine shrinkage and requires Ago2 phosphorylation at S387. Not all gene silencing events are modulated by S387 phosphorylation, and the mechanisms that govern the selection of specific mRNAs for silencing downstream of S387 phosphorylation are unknown. Here, we show that NMDAR-dependent S387 phosphorylation causes a rapid and transient increase in the association of Ago2 with Limk1, but not Apt1 mRNA. The specific increase in Limk1 mRNA binding to Ago2 requires recruitment of the helicase DDX6 to RISC. Furthermore, we show that DDX6 is required for NMDAR-dependent silencing of Limk1 via miR-134, but not Apt1 via miR-138, and is essential for NMDAR-dependent spine shrinkage. This work defines a novel mechanism for the rapid transduction of NMDAR stimulation into miRNA-mediated translational repression of specific genes to control dendritic spine morphology.


Asunto(s)
MicroARNs , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Espinas Dendríticas/metabolismo , ARN Helicasas/metabolismo , MicroARNs/genética , Proteínas Argonautas/genética , Complejo Silenciador Inducido por ARN/metabolismo , Silenciador del Gen , ARN Mensajero/genética
11.
J Neurosci ; 32(34): 11618-30, 2012 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-22915106

RESUMEN

The number and subunit composition of postsynaptic AMPA receptors (AMPARs) is a key determinant of synaptic transmission. The vast majority of AMPARs contain GluA2 subunit, which renders the channel impermeable to calcium. However, a small proportion are GluA2 lacking and therefore calcium permeable (CP-AMPARs). It has been proposed recently that long-term potentiation (LTP) involves not only an increase in the total number of AMPARs at the synapse but also a transient switch to CP-AMPARs in the first few minutes after LTP induction. The molecular mechanisms that underlie this switch to CP-AMPARs and the subsequent switch back to calcium-impermeable AMPARs are unknown. Here, we show that endogenous GluA1 is rapidly inserted at the synaptic plasma membrane of rat hippocampal neurons immediately after stimulation with elevated glycine, a treatment known to induce LTP. In contrast, GluA2 is restricted from trafficking to the cell surface by a glycine-induced increase in PICK1-GluA2 binding on endosomal compartments. Between 5 and 20 min after stimulus, activation of CP-AMPARs triggers a release of GluA2 from PICK1, allowing GluA2-containing AMPARs to traffic to the synaptic plasma membrane. These results define a PICK1-dependent mechanism that underlies transient alterations in the subunit composition and calcium permeability of synaptic AMPARs that is important during the early phase after stimulation with glycine and therefore is likely to be important during the expression of LTP.


Asunto(s)
Proteínas Portadoras/metabolismo , Glicina/farmacología , Neuronas/fisiología , Proteínas Nucleares/metabolismo , Receptores AMPA/metabolismo , Animales , Biotinilación , Calcio/metabolismo , Proteínas Portadoras/genética , Células Cultivadas , Proteínas del Citoesqueleto , Homólogo 4 de la Proteína Discs Large , Embrión de Mamíferos , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Proteínas de Unión al GTP/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Hipocampo/citología , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/genética , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Proteínas Nucleares/genética , Transporte de Proteínas/efectos de los fármacos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Wistar , Receptores AMPA/deficiencia , Receptores AMPA/genética , Espermina/análogos & derivados , Espermina/farmacología , Sinapsis/metabolismo , Factores de Tiempo , Transfección , Transferrina/metabolismo , Proteínas de Transporte Vesicular/metabolismo
12.
J Neurosci ; 31(33): 11941-52, 2011 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-21849555

RESUMEN

Hippocampal CA1 pyramidal neurons are highly sensitive to ischemic damage, whereas neighboring CA3 pyramidal neurons are less susceptible. It is proposed that switching of AMPA receptor (AMPAR) subunits on CA1 neurons during an in vitro model of ischemia, oxygen/glucose deprivation (OGD), leads to an enhanced permeability of AMPARs to Ca(2+), resulting in delayed cell death. However, it is unclear whether the same mechanisms exist in CA3 neurons and whether this underlies the differential sensitivity to ischemia. Here, we investigated the consequences of OGD for AMPAR function in CA3 neurons using electrophysiological recordings in rat hippocampal slices. Following a 15 min OGD protocol, a substantial depression of AMPAR-mediated synaptic transmission was observed at CA3 associational/commissural and mossy fiber synapses but not CA1 Schaffer collateral synapses. The depression of synaptic transmission following OGD was prevented by metabotropic glutamate receptor 1 (mGluR1) or A(3) receptor antagonists, indicating a role for both glutamate and adenosine release. Inhibition of PLC, PKC, or chelation of intracellular Ca(2+) also prevented the depression of synaptic transmission. Inclusion of peptides to interrupt the interaction between GluA2 and PICK1 or dynamin and amphiphysin prevented the depression of transmission, suggesting a dynamin and PICK1-dependent internalization of AMPARs after OGD. We also show that a reduction in surface and total AMPAR protein levels after OGD was prevented by mGluR1 or A(3) receptor antagonists, indicating that AMPARs are degraded following internalization. Thus, we describe a novel mechanism for the removal of AMPARs in CA3 pyramidal neurons following OGD that has the potential to reduce excitotoxicity and promote neuroprotection.


Asunto(s)
Región CA3 Hipocampal/metabolismo , Glucosa/deficiencia , Inhibición Neural/fisiología , Oxígeno/metabolismo , Receptor de Adenosina A3/fisiología , Receptores AMPA/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/fisiología , Sinapsis/metabolismo , Animales , Animales Recién Nacidos , Región CA3 Hipocampal/citología , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar , Receptor de Adenosina A3/metabolismo , Receptores AMPA/metabolismo
13.
Front Mol Neurosci ; 15: 893739, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721319

RESUMEN

Bin-Amphiphysin-Rvs (BAR) domain proteins are critical regulators of membrane geometry. They induce and stabilize membrane curvature for processes, such as clathrin-coated pit formation and endosomal membrane tubulation. BAR domains form their characteristic crescent-shaped structure in the dimeric form, indicating that the formation of the dimer is critical to their function of inducing membrane curvature and suggesting that a dynamic monomer-dimer equilibrium regulated by cellular signaling would be a powerful mechanism for controlling BAR domain protein function. However, to the best of our knowledge, cellular mechanisms for regulating BAR domain dimerization remain unexplored. PICK1 is a Ca2+-binding BAR domain protein involved in the endocytosis and endosomal recycling of neuronal AMPA receptors and other transmembrane proteins. In this study, we demonstrated that PICK1 dimerization is regulated by a direct effect of Ca2+ ions via acidic regions in the BAR domain and at the N-terminus. While the cellular membrane tubulating activity of PICK1 is absent under basal conditions, Ca2+ influx causes the generation of membrane tubules that originate from the cell surface. Furthermore, in neurons, PICK1 dimerization increases transiently following NMDA receptor stimulation. We believe that this novel mechanism for regulating BAR domain dimerization and function represents a significant conceptual advance in our knowledge about the regulation of cellular membrane curvature.

14.
Sci Rep ; 12(1): 15231, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36075936

RESUMEN

Accumulation of tau is observed in dementia, with human tau displaying 6 isoforms grouped by whether they display either 3 or 4 C-terminal repeat domains (3R or 4R) and exhibit no (0N), one (1N) or two (2N) N terminal repeats. Overexpression of 4R0N-tau in rat hippocampal slices enhanced the L-type calcium (Ca2+) current-dependent components of the medium and slow afterhyperpolarizations (AHPs). Overexpression of both 4R0N-tau and 4R2N-tau augmented CaV1.2-mediated L-type currents when expressed in tsA-201 cells, an effect not observed with the third 4R isoform, 4R1N-tau. Current enhancement was only observed when the pore-forming subunit was co-expressed with CaVß3 and not CaVß2a subunits. Non-stationary noise analysis indicated that enhanced Ca2+ channel current arose from a larger number of functional channels. 4R0N-tau and CaVß3 were found to be physically associated by co-immunoprecipitation. In contrast, the 4R1N-tau isoform that did not augment expressed macroscopic L-type Ca2+ current exhibited greatly reduced binding to CaVß3. These data suggest that physical association between tau and the CaVß3 subunit stabilises functional L-type channels in the membrane, increasing channel number and Ca2+ influx. Enhancing the Ca2+-dependent component of AHPs would produce cognitive impairment that underlie those seen in the early phases of tauopathies.


Asunto(s)
Calcio , Tauopatías , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/genética , Calcio de la Dieta/metabolismo , Hipocampo/metabolismo , Humanos , Neuronas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Tauopatías/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
15.
Neuropharmacology ; 197: 108723, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34274347

RESUMEN

AMPA receptors (AMPARs) are the major excitatory neurotransmitter receptor in the brain, and their expression at synapses is a critical determinant of synaptic transmission and therefore brain function. Synaptic plasticity involves increases or decreases in synaptic strength, caused by changes in the number or subunit-specific subtype of AMPARs expressed at synapses, and resulting in modifications of functional connectivity of neuronal circuits, a process which is thought to underpin learning and the formation or loss of memories. Furthermore, numerous neurological disorders involve dysregulation of excitatory synaptic transmission or aberrant recruitment of plasticity processes. MicroRNAs (miRNAs) repress the translation of target genes by partial complementary base pairing with mRNAs, and are the core component of a mechanism widely used in a range of cell processes for regulating protein translation. MiRNA-dependent translational repression can occur locally in neuronal dendrites, close to synapses, and can also result in relatively rapid changes in protein expression. MiRNAs are therefore well-placed to regulate synaptic plasticity via the local control of AMPAR subunit synthesis, and can also result in synaptic dysfunction in the event of dysregulation in disease. Here, I will review the miRNAs that have been identified as playing a role in physiological or pathological changes in AMPAR subunit expression at synapses, focussing on miRNAs that target mRNAs encoding AMPAR subunits, and on miRNAs that target AMPAR accessory proteins involved in AMPAR trafficking and hence the regulation of AMPAR synaptic localisation. This article is part of the special Issue on 'Glutamate Receptors - AMPA receptors'.


Asunto(s)
MicroARNs/genética , Receptores AMPA/biosíntesis , Receptores AMPA/genética , Animales , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Humanos , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Sinapsis/metabolismo
16.
Prog Neurobiol ; 205: 102122, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34284000

RESUMEN

Memory consolidation requires activation of a gene expression program that allows de novo protein synthesis. But the molecular mechanisms that favour or restrict that program are poorly understood. The kinase c-Abl can modulate gene expression through transcription factors and chromatin modifiers. Here, we show that c-Abl ablation in the brain improves learning acquisition and memory consolidation in mice. Its absence also affects gene expression profiles in the mouse hippocampus. We found that genes involved in synaptic plasticity and actin cytoskeleton dynamics, such as Arp2 and Thorase, are up-regulated at the mRNA and protein levels in trained c-Abl KO mice and by a chemical-LTP stimulus. Trained c-Abl KO mice also show that dendritic spines are larger than in wild-type mice and present at a higher density. These results indicate that c-Abl kinase is an important part of the mechanism that limits or restricts signalling of relevant gene programs involved in morphological and functional spine changes upon neuronal stimulation.


Asunto(s)
Aprendizaje , Plasticidad Neuronal , Animales , Espinas Dendríticas , Genes abl , Hipocampo , Consolidación de la Memoria , Ratones , Neuronas , Sinapsis
17.
Neuron ; 49(6): 778-80, 2006 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-16543122

RESUMEN

Cerebellar long-term depression is thought to underlie motor learning and is mediated by internalization of AMPA receptors from the neuronal plasma membrane. In this issue of Neuron, Steinberg et al. provide firm evidence that PICK 1 and the C terminus of GluR2 are central to this process by analyzing three different transgenic mice.


Asunto(s)
Cerebelo/citología , Potenciación a Largo Plazo/fisiología , Neuronas/fisiología , Animales , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Cerebelo/fisiología , Ratones , Modelos Biológicos , Proteínas Nucleares/metabolismo , Receptores AMPA/fisiología
18.
Biochem Soc Trans ; 38(2): 460-5, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20298203

RESUMEN

An important mechanism for the regulation of excitatory synaptic transmission in the hippocampus involves tight control of AMPAR [AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor] trafficking to alter the number or subtype of synaptic receptors. This is achieved via the multiple stages of the endosomal system. AMPARs constitutively cycle through early endosomes and recycling endosomes to maintain synaptic receptor numbers. However, on induction of synaptic plasticity, subtle alterations are made to this cycle by the action of specific AMPAR-interacting proteins and also via a number of additional proteins that regulate endosomal sorting more generally. During long-term depression, receptors are diverted to late endosomes and lysosomes rather than recycling back to the plasma membrane, hence reducing the number of receptors at the synapse. The increased number of synaptic AMPARs after induction of LTP (long-term potentiation) originates from the recycling compartment. In addition, transient changes in subunit composition may arise as a result of retention of AMPAR subtypes within the endosome during LTP. Aberrant trafficking after pathological insults such as oxygen/glucose deprivation or mechanical trauma also involves alterations in synaptic AMPAR subunit composition, leading to calcium influx that ultimately results in cell death.


Asunto(s)
Endosomas/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Animales , Hipocampo/patología , Hipocampo/fisiología , Humanos , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Modelos Biológicos , Neuronas/fisiología , Subunidades de Proteína/metabolismo , Transporte de Proteínas/fisiología , Especificidad por Sustrato
19.
Pharmacol Ther ; 118(1): 152-60, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18353440

RESUMEN

AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor trafficking is a fundamental mechanism for regulating synaptic strength, and hence may underlie cellular processes involved in learning and memory. PICK1 (protein interacting with C-kinase) is a PDZ and BAR domain-containing protein that has recently emerged as a key regulator of AMPA receptor traffic. Via the PDZ domain, PICK1 interacts directly with AMPA receptor subunits and is involved in the regulated removal of AMPA receptors from the synaptic plasma membrane. PICK1 has the ability to functionally interact with a number of cellular processes, including calcium signaling, actin polymerisation and phospholipid membrane architecture. In this review, I summarize recent findings that describe the importance of PICK1 in neurons and its specific molecular characteristics that enable it to regulate AMPA receptor trafficking.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas Nucleares/fisiología , Transporte de Proteínas , Receptores AMPA/metabolismo , Actinas/metabolismo , Regulación Alostérica , Señalización del Calcio/fisiología , Citoesqueleto/metabolismo , Humanos , Neuronas/metabolismo , Subunidades de Proteína/metabolismo
20.
Neuron ; 34(1): 53-67, 2002 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-11931741

RESUMEN

AMPA receptor (AMPAR) trafficking is crucial for synaptic plasticity that may be important for learning and memory. NSF and PICK1 bind the AMPAR GluR2 subunit and are involved in trafficking of AMPARs. Here, we show that GluR2, PICK1, NSF, and alpha-/beta-SNAPs form a complex in the presence of ATPgammaS. Similar to SNARE complex disassembly, NSF ATPase activity disrupts PICK1-GluR2 interactions in this complex. Alpha- and beta-SNAP have differential effects on this reaction. SNAP overexpression in hippocampal neurons leads to corresponding changes in AMPAR trafficking by acting on GluR2-PICK1 complexes. This demonstrates that the previously reported synaptic stabilization of AMPARs by NSF involves disruption of GluR2-PICK1 interactions. Furthermore, we are reporting a non-SNARE substrate for NSF disassembly activity.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/fisiología , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Receptores AMPA/metabolismo , Proteínas de Transporte Vesicular , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/genética , Células Cultivadas , Proteínas del Citoesqueleto , Embrión de Mamíferos , Hipocampo/citología , Hipocampo/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Mutación/genética , Proteínas Sensibles a N-Etilmaleimida , Neuronas/citología , Neuronas/enzimología , Neuronas/metabolismo , Transporte de Proteínas/fisiología , Ratas , Ratas Sprague-Dawley , Receptores AMPA/biosíntesis , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA