RESUMEN
Genome-scale human protein-protein interaction networks are critical to understanding cell biology and interpreting genomic data, but challenging to produce experimentally. Through data integration and quality control, we provide a scored human protein-protein interaction network (InWeb_InBioMap, or InWeb_IM) with severalfold more interactions (>500,000) and better functional biological relevance than comparable resources. We illustrate that InWeb_InBioMap enables functional interpretation of >4,700 cancer genomes and genes involved in autism.
Asunto(s)
Biología Computacional/métodos , Interpretación Estadística de Datos , Redes Reguladoras de Genes , Genómica/métodos , Neoplasias/genética , Neoplasias/metabolismo , Mapas de Interacción de Proteínas/genética , Bases de Datos de Proteínas , Genoma Humano , Humanos , Interfaz Usuario-ComputadorRESUMEN
OBJECTIVES: Previous studies in food-producing animals have shown associations between antimicrobial use (AMU) and resistance (AMR) in specifically isolated bacterial species. Multi-country data are scarce and only describe between-country differences. Here we investigate associations between the pig faecal mobile resistome and characteristics at the farm-level across Europe. METHODS: A cross-sectional study was conducted among 176 conventional pig farms from nine European countries. Twenty-five faecal samples from fattening pigs were pooled per farm and acquired resistomes were determined using shotgun metagenomics and the Resfinder reference database, i.e. the full collection of horizontally acquired AMR genes (ARGs). Normalized fragments resistance genes per kilobase reference per million bacterial fragments (FPKM) were calculated. Specific farm-level data (AMU, biosecurity) were collected. Random-effects meta-analyses were performed by country, relating farm-level data to relative ARG abundances (FPKM). RESULTS: Total AMU during fattening was positively associated with total ARG (total FPKM). Positive associations were particularly observed between widely used macrolides and tetracyclines, and ARGs corresponding to the respective antimicrobial classes. Significant AMU-ARG associations were not found for ß-lactams and only few colistin ARGs were found, despite high use of these antimicrobial classes in younger pigs. Increased internal biosecurity was directly related to higher abundances of ARGs mainly encoding macrolide resistance. These effects of biosecurity were independent of AMU in mutually adjusted models. CONCLUSIONS: Using resistome data in association studies is unprecedented and adds accuracy and new insights to previously observed AMU-AMR associations. Major components of the pig resistome are positively and independently associated with on-farm AMU and biosecurity conditions.
Asunto(s)
Crianza de Animales Domésticos/métodos , Antiinfecciosos/uso terapéutico , Biota/efectos de los fármacos , Farmacorresistencia Bacteriana , Utilización de Medicamentos/estadística & datos numéricos , Heces/microbiología , Genes Bacterianos , Animales , Biología Computacional , Estudios Transversales , Europa (Continente) , Metagenómica , PorcinosRESUMEN
AIMS: Dilated cardiomyopathy (DCM) associated with dystrophin gene (DMD) mutations in individuals with mild or absent skeletal myopathy is often indistinguishable from other DCM forms. We sought to describe the phenotype and prognosis of DMD associated DCM in DMD mutation carriers without severe skeletal myopathy. METHODS AND RESULTS: At 26 European centres, we retrospectively collected clinical characteristics and outcomes of 223 DMD mutation carriers (83% male, 33 ± 15 years). A total of 112 individuals (52%) had DCM at first evaluation [n = 85; left ventricular ejection fraction (LVEF) 34 ± 11.2%] or developed DCM (n = 27; LVEF 41.3 ± 7.5%) after a median follow-up of 96 months (interquartile range 5-311 months). DCM penetrance was 45% in carriers older than 40 years. DCM appeared earlier in males and was independent of the type of mutation, presence of skeletal myopathy, or elevated serum creatine kinase levels. Major adverse cardiac events (MACE) occurred in 22% individuals with DCM, 18% developed end-stage heart failure and 9% sudden cardiac death or equivalent. Skeletal myopathy was not associated with survival free of MACE in patients with DCM. Decreased LVEF and increased left ventricular end-diastolic diameter at baseline were associated with MACE. Individuals without DCM had favourable prognosis without MACE or death during follow-up. CONCLUSIONS: DMD-associated DCM without severe skeletal myopathy is characterized by incomplete penetrance but high risk of MACE, including progression to end-stage heart failure and ventricular arrhythmias. DCM onset is the major determinant of prognosis with similar survival regardless of the presence of skeletal myopathy.
Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Enfermedades Musculares , Adolescente , Adulto , Cardiomiopatía Dilatada/epidemiología , Cardiomiopatía Dilatada/genética , Distrofina/genética , Femenino , Insuficiencia Cardíaca/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Prevalencia , Estudios Retrospectivos , Volumen Sistólico , Función Ventricular Izquierda , Adulto JovenRESUMEN
BACKGROUND: By studying the entire human faecal resistome and associated microbiome, the diversity and abundance of faecal antimicrobial resistance genes (ARGs) can be comprehensively characterized. Prior culture-based studies have shown associations between occupational exposure to livestock and carriage of specific antimicrobial resistant bacteria. Using shotgun metagenomics, the present study investigated 194 faecal resistomes and bacteriomes from humans occupationally exposed to ARGs in livestock (i.e. pig and poultry farmers, employees and family members and pig slaughterhouse workers) and a control population (Lifelines cohort) in the Netherlands. In addition, we sought to identify determinants for the human resistome and bacteriome composition by applying a combination of multivariate (NMDS, PERMANOVA, SIMPER and DESeq2 analysis) and multivariable regression analysis techniques. RESULTS: Pig slaughterhouse workers and pig farmers carried higher total ARG abundances in their stools compared to broiler farmers and control subjects. Tetracycline, ß-lactam and macrolide resistance gene clusters dominated the resistome of all studied groups. No significant resistome alpha diversity differences were found among the four populations. However, the resistome beta diversity showed a separation of the mean resistome composition of pig and pork exposed workers from broiler farmers and controls, independent of their antimicrobial use. We demonstrated differences in resistome composition between slaughter line positions, pig versus poultry exposed workers, as well as differences between farmers and employees versus family members. In addition, we found a significant correlation between the bacteriome and resistome, and significant differences in the bacteriome composition between and within the studied subpopulations. Finally, an in-depth analysis of pig and poultry farms - of which also farm livestock resistomes were analysed - showed positive associations between the number of on-farm working hours and human faecal AMR loads. CONCLUSION: We found that the total normalized faecal ARG carriage was larger in persons working in the Dutch pork production chain compared to poultry farmers and controls. Additionally, we showed significant differences in resistome and bacteriome composition of pig and pork exposed workers compared to a control group, as well as within-population (farms, slaughterhouse) compositional differences. The number of on-farm working hours and the farm type (pig or broiler) that persons live or work on are determinants for the human faecal resistome. Overall, our results may suggest direct or indirect livestock contact as a determinant for human ARG carriage. Future studies should further focus on the connection between the human and livestock resistome (i.e. transmission routes) to substantiate the evidence for livestock-associated resistome acquisition.