Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Genet Genomics ; 295(2): 357-371, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31776761

RESUMEN

Females and males differ substantially in various neuronal functions in divergent, sexually dimorphic animal species, including humans. Despite its developmental, physiological and medical significance, understanding the molecular mechanisms by which sex-specific differences in the anatomy and operation of the nervous system are established remains a fundamental problem in biology. Here, we show that in Caenorhabditis elegans (nematodes), the global sex-determining factor TRA-1 regulates food leaving (mate searching), male mating and adaptation to odorants in a sex-specific manner by repressing the expression of goa-1 gene, which encodes the Gα(i/o) subunit of heterotrimeric G (guanine-nucleotide binding) proteins triggering physiological responses elicited by diverse neurotransmitters and sensory stimuli. Mutations in tra-1 and goa-1 decouple behavioural patterns from the number of X chromosomes. TRA-1 binds to a conserved binding site located in the goa-1 coding region, and downregulates goa-1 expression in hermaphrodites, particularly during embryogenesis when neuronal development largely occurs. These data suggest that the sex-determination machinery is an important modulator of heterotrimeric G protein-mediated signalling and thereby various neuronal functions in this organism and perhaps in other animal phyla.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Neuronas/metabolismo , Factores de Transcripción/genética , Animales , Sitios de Unión/genética , Caenorhabditis elegans/crecimiento & desarrollo , Desarrollo Embrionario/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Masculino , Mutación/genética , Procesos de Determinación del Sexo/genética , Cromosoma X/genética
2.
J Cell Sci ; 124(Pt 9): 1510-8, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21502138

RESUMEN

Autophagy is a lysosome-mediated self-degradation process of eukaryotic cells that, depending on the cellular milieu, can either promote survival or act as an alternative mechanism of programmed cell death (PCD) in terminally differentiated cells. Despite the important developmental and medical implications of autophagy and the main form of PCD, apoptosis, orchestration of their regulation remains poorly understood. Here, we show in the nematode Caenorhabditis elegans, that various genetic and pharmacological interventions causing embryonic lethality trigger a massive cell death response that has both autophagic and apoptotic features. The two degradation processes are also redundantly required for normal development and viability in this organism. Furthermore, the CES-2-like basic region leucine-zipper (bZip) transcription factor ATF-2, an upstream modulator of the core apoptotic cell death pathway, is able to directly regulate the expression of at least two key autophagy-related genes, bec-1/ATG6 and lgg-1/ATG8. Thus, the two cell death mechanisms share a common method of transcriptional regulation. Together, these results imply that under certain physiological and pathological conditions, autophagy and apoptosis are co-regulated to ensure the proper morphogenesis and survival of the developing organism. The identification of apoptosis and autophagy as compensatory cellular pathways in C. elegans might help us to understand how dysregulated PCD in humans can lead to diverse pathologies, including cancer, neurodegeneration and diabetes.


Asunto(s)
Apoptosis/fisiología , Autofagia/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Animales , Apoptosis/genética , Autofagia/genética , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Etiquetado Corte-Fin in Situ , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
3.
BMC Dev Biol ; 12: 32, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23116063

RESUMEN

BACKGROUND: Temperature affects virtually all cellular processes. A quick increase in temperature challenges the cells to undergo a heat shock response to maintain cellular homeostasis. Heat shock factor-1 (HSF-1) functions as a major player in this response as it activates the transcription of genes coding for molecular chaperones (also called heat shock proteins) that maintain structural integrity of proteins. However, the mechanisms by which HSF-1 adjusts fundamental cellular processes such as growth, proliferation, differentiation and aging to the ambient temperature remain largely unknown. RESULTS: We demonstrate here that in Caenorhabditis elegans HSF-1 represses the expression of daf-7 encoding a TGF-ß (transforming growth factor-beta) ligand, to induce young larvae to enter the dauer stage, a developmentally arrested, non-feeding, highly stress-resistant, long-lived larval form triggered by crowding and starvation. Under favorable conditions, HSF-1 is inhibited by crowding pheromone-sensitive guanylate cyclase/cGMP (cyclic guanosine monophosphate) and systemic nutrient-sensing insulin/IGF-1 (insulin-like growth factor-1) signaling; loss of HSF-1 activity allows DAF-7 to promote reproductive growth. Thus, HSF-1 interconnects the insulin/IGF-1, TGF-ß and cGMP neuroendocrine systems to control development and longevity in response to diverse environmental stimuli. Furthermore, HSF-1 upregulates another TGF-ß pathway-interacting gene, daf-9/cytochrome P450, thereby fine-tuning the decision between normal growth and dauer formation. CONCLUSION: Together, these results provide mechanistic insight into how temperature, nutrient availability and population density coordinately influence development, lifespan, behavior and stress response through HSF-1.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , GMP Cíclico/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Envejecimiento/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Respuesta al Choque Térmico/genética , Insulina/metabolismo , Longevidad/genética , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal , Estrés Fisiológico , Factores de Transcripción/genética , Regulación hacia Arriba
4.
Development ; 136(23): 3881-7, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19906855

RESUMEN

In the nematode Caenorhabditis elegans, sex is determined by the ratio of X chromosomes to sets of autosomes: XX animals (2X:2A=1.0) develop as hermaphrodites and XO animals (1X:2A=0.5) develop as males. TRA-1, the worm ortholog of Drosophila Cubitus interruptus and mammalian Gli (Glioma-associated homolog) proteins, is the terminal transcription factor of the C. elegans sex-determination pathway, which specifies hermaphrodite fate by repressing male-specific genes. Here we identify a consensus TRA-1 binding site in the regulatory region of xol-1, the master switch gene controlling sex determination and dosage compensation. xol-1 is normally expressed in males, where it promotes male development and prevents dosage compensation. We show that TRA-1 binds to the consensus site in the xol-1 promoter in vitro and inhibits the expression of xol-1 in XX animals in vivo. Furthermore, inactivation of tra-1 enhances, whereas hyperactivation of tra-1 suppresses, lethality in animals with elevated xol-1 activity. These data imply the existence of a regulatory feedback loop within the C. elegans sex-determination and dosage-compensation cascade that ensures the accurate dose of X-linked genes in cells destined to adopt hermaphrodite fate.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Genes de Helminto , Genes Ligados a X , Factores de Transcripción/genética , Animales , Secuencia de Bases , Sitios de Unión , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Secuencia de Consenso , Secuencia Conservada , Proteínas de Unión al ADN/metabolismo , Compensación de Dosificación (Genética) , Genes de Cambio , Masculino , Datos de Secuencia Molecular , Mutación , Regiones Promotoras Genéticas , Unión Proteica , Procesos de Determinación del Sexo , Factores de Transcripción/metabolismo , Cromosoma X
5.
Dev Biol ; 330(2): 339-48, 2009 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19361495

RESUMEN

The vulva of the Caenorhabditis elegans hermaphrodite develops from a subset of six vulval precursor cells (VPCs) by the combined effect of the Ras, Wingless and Notch signaling cascades, and of three redundant synMuv (synthetic Multivulva) pathways grouped into classes A, B and C. Here we show that signaling via the GLI- (Glioma-associated protein) like transcription factor TRA-1, which is the terminal regulator of the C. elegans sex determination cascade, is a newly discovered pathway specifying vulval cell fates. We found that TRA-1 accumulates in, and regulates the fusion process of, cells (including the VPCs and hypodermal cells) involved in vulval patterning. TRA-1 also influenced the expression of the Hox gene lin-39, a central regulator of vulval development. Furthermore, inactivation of tra-1, which transforms animals with hermaphrodite-specific karyotype into males, promoted vulval induction in synMuv A, but not in synMuv B, mutant background. This implies that TRA-1 interacts with the class B synMuv genes, many of which are involved in chromatin-mediated transcriptional repression of cell proliferation. These results may help to understand how compromised GLI activity in humans leads to cancer. Together, we suggest that the GLI protein family involved in several key developmental processes in both invertebrates and vertebrates regulates somatic cell fates through influencing, at least in part, the expression of specific Hox genes.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/embriología , Proteínas de Unión al ADN/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/genética , Proteínas Oncogénicas/fisiología , Factores de Transcripción/fisiología , Vulva/embriología , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Femenino , Masculino , Unión Proteica , Secuencias Reguladoras de Ácidos Nucleicos , Procesos de Determinación del Sexo , Transducción de Señal , Factores de Transcripción/metabolismo
6.
Aging Cell ; 17(3): e12724, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29493066

RESUMEN

A fascinating aspect of sexual dimorphism in various animal species is that the two sexes differ substantially in lifespan. In humans, for example, women's life expectancy exceeds that of men by 3-7 years. Whether this trait can be attributed to dissimilar lifestyles or genetic (regulatory) factors remains to be elucidated. Herein, we demonstrate that in the nematode Caenorhabditis elegans, the significantly longer lifespan of hermaphrodites-which are essentially females capable of sperm production-over males is established by TRA-1, the terminal effector of the sex-determination pathway. This transcription factor directly controls the expression of daf-16/FOXO, which functions as a major target of insulin/IGF-1 signaling (IIS) and key modulator of aging across diverse animal phyla. TRA-1 extends hermaphrodite lifespan through promoting daf-16 activity. Furthermore, TRA-1 also influences reproductive growth in a DAF-16-dependent manner. Thus, the sex-determination machinery is an important regulator of IIS in this organism. These findings provide a mechanistic insight into how longevity and development are specified unequally in the two genders. As TRA-1 is orthologous to mammalian GLI (glioma-associated) proteins, a similar sex-specific mechanism may also operate in humans to determine lifespan.


Asunto(s)
Caenorhabditis elegans/genética , Procesos de Determinación del Sexo/genética , Envejecimiento , Animales , Femenino , Masculino , Factores Sexuales
7.
Elife ; 52016 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-27602485

RESUMEN

Cell-fate reprograming is at the heart of development, yet very little is known about the molecular mechanisms promoting or inhibiting reprograming in intact organisms. In the C. elegans germline, reprograming germ cells into somatic cells requires chromatin perturbation. Here, we describe that such reprograming is facilitated by GLP-1/Notch signaling pathway. This is surprising, since this pathway is best known for maintaining undifferentiated germline stem cells/progenitors. Through a combination of genetics, tissue-specific transcriptome analysis, and functional studies of candidate genes, we uncovered a possible explanation for this unexpected role of GLP-1/Notch. We propose that GLP-1/Notch promotes reprograming by activating specific genes, silenced by the Polycomb repressive complex 2 (PRC2), and identify the conserved histone demethylase UTX-1 as a crucial GLP-1/Notch target facilitating reprograming. These findings have wide implications, ranging from development to diseases associated with abnormal Notch signaling.

8.
PLoS One ; 9(3): e92687, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24658123

RESUMEN

Abnormal regulation of cell migration and altered rearrangement of cytoskeleton are characteristic of metastatic cells. The first described suppressor of metastatic processes is NM23-H1, which displays NDPK (nucleoside-diphosphate kinase) activity. To better understand the role of nm23 genes in cell migration, we investigated the function of NDK-1, the sole Caenorhabditis elegans homolog of group I NDPKs in distal tip cell (DTC) migration. Dorsal phase of DTC migration is regulated by integrin mediated signaling. We find that ndk-1 loss of function mutants show defects in this phase. Epistasis analysis using mutants of the α-integrin ina-1 and the downstream functioning motility-promoting signaling module (referred to as CED-10 pathway) placed NDK-1 downstream of CED-10/Rac. As DTC migration and engulfment of apoptotic corpses are analogous processes, both partially regulated by the CED-10 pathway, we investigated defects of apoptosis in ndk-1 mutants. Embryos and germ cells defective for NDK-1 showed an accumulation of apoptotic cell corpses. Furthermore, NDK-1::GFP is expressed in gonadal sheath cells, specialized cells for engulfment and clearence of apoptotic corpses in germ line, which indicates a role for NDK-1 in apoptotic corpse removal. In addition to the CED-10 pathway, engulfment in the worm is also mediated by the CED-1 pathway. abl-1/Abl and abi-1/Abi, which function in parallel to both CED-10/CED-1 pathways, also regulate engulfment and DTC migration. ndk-1(-);abi-1(-) double mutant embryos display an additive phenotype (e. g. enhanced number of apoptotic corpses) which suggests that ndk-1 acts in parallel to abi-1. Corpse number in ndk-1(-);ced-10(-) double mutants, however, is similar to ced-10(-) single mutants, suggesting that ndk-1 acts downstream of ced-10 during engulfment. In addition, NDK-1 shows a genetic interaction with DYN-1/dynamin, a downstream component of the CED-1 pathway. In summary, we propose that NDK-1/NDPK might represent a converging point of CED-10 and CED-1 pathways in the process of cytoskeleton rearrangement.


Asunto(s)
Apoptosis/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Movimiento Celular/genética , Nucleósido Difosfato Quinasas NM23/genética , Nucleósido Difosfato Quinasas NM23/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Embrión no Mamífero/metabolismo , Genes Letales , Humanos , Mutación , Fenotipo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA