Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Alcohol Clin Exp Res ; 44(12): 2468-2480, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33067813

RESUMEN

BACKGROUND: Long noncoding RNA (lncRNA) have been implicated in the etiology of alcohol use. Since lncRNA provide another layer of complexity to the transcriptome, assessing their expression in the brain is the first critical step toward understanding lncRNA functions in alcohol use and addiction. Thus, we sought to profile lncRNA expression in the nucleus accumbens (NAc) in a large postmortem alcohol brain sample. METHODS: LncRNA and protein-coding gene (PCG) expressions in the NAc from 41 subjects with alcohol dependence (AD) and 41 controls were assessed via a regression model. Weighted gene coexpression network analysis was used to identify lncRNA and PCG networks (i.e., modules) significantly correlated with AD. Within the significant modules, key network genes (i.e., hubs) were also identified. The lncRNA and PCG hubs were correlated via Pearson correlations to elucidate the potential biological functions of lncRNA. The lncRNA and PCG hubs were further integrated with GWAS data to identify expression quantitative trait loci (eQTL). RESULTS: At Bonferroni adj. p-value ≤ 0.05, we identified 19 lncRNA and 5 PCG significant modules, which were enriched for neuronal and immune-related processes. In these modules, we further identified 86 and 315 PCG and lncRNA hubs, respectively. At false discovery rate (FDR) of 10%, the correlation analyses between the lncRNA and PCG hubs revealed 3,125 positive and 1,860 negative correlations. Integration of hubs with genotype data identified 243 eQTLs affecting the expression of 39 and 204 PCG and lncRNA hubs, respectively. CONCLUSIONS: Our study identified lncRNA and gene networks significantly associated with AD in the NAc, coordinated lncRNA and mRNA coexpression changes, highlighting potentially regulatory functions for the lncRNA, and our genetic (cis-eQTL) analysis provides novel insights into the etiological mechanisms of AD.


Asunto(s)
Alcoholismo/metabolismo , Núcleo Accumbens/metabolismo , ARN Largo no Codificante/metabolismo , Alcoholismo/genética , Estudios de Casos y Controles , Estudio de Asociación del Genoma Completo , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Sitios de Carácter Cuantitativo , ARN Largo no Codificante/genética , Transcriptoma
2.
Hepatol Commun ; 5(1): 63-73, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33437901

RESUMEN

Major histocompatibility complex class I-related chain A (MICA) is a highly polymorphic gene that modulates immune surveillance by binding to its receptor on natural killer cells, and its genetic polymorphisms have been associated with chronic immune-mediated diseases. The progressive form of nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), is characterized by accumulation of fat and inflammatory cells in the hepatic parenchyma, potentially leading to liver cell injury and fibrosis. To date, there are no data describing the potential role of MICA in the pathogenesis of NAFLD. Therefore, our aim was to assess the association between MICA polymorphism and NASH and its histologic features. A total of 134 subjects were included. DNA from patients with biopsy-proven NAFLD were genotyped using polymerase chain reaction-sequence-specific oligonucleotide for MICA alleles. Liver biopsies were assessed for histologic diagnosis of NASH and specific pathologic features, including stage of fibrosis and grade of inflammation. Multivariate analysis was performed to draw associations between MICA alleles and the different variables; P ≤ 0.05 was considered significant. Univariate analysis showed that MICA*011 (odds ratio [OR], 7.14; 95% confidence interval [CI], 1.24-41.0; P = 0.04) was associated with a higher risk for histologic NASH. Multivariate analysis showed that MICA*002 was independently associated with a lower risk for focal hepatocyte necrosis (OR, 0.24; 95% CI, 0.08-0.74; P = 0.013) and advanced fibrosis (OR, 0.11; 95% CI, 0.02-0.70; P = 0.019). MICA*017 was independently associated with a higher risk for lymphocyte-mediated inflammation (OR, 5.12; 95% CI, 1.12-23.5; P = 0.035). Conclusion: MICA alleles may be associated with NASH and its histologic features of inflammation and fibrosis. Additional research is required to investigate the potential role of MICA in increased risk or protection against NAFLD.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Adulto , Alelos , Femenino , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/patología , Polimorfismo Genético
3.
Mol Neurodegener ; 15(1): 4, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31924226

RESUMEN

BACKGROUND: Multiomic studies by several groups in the NIH Accelerating Medicines Partnership for Alzheimer's Disease (AMP-AD) identified VGF as a major driver of Alzheimer's disease (AD), also finding that reduced VGF levels correlate with mean amyloid plaque density, Clinical Dementia Rating (CDR) and Braak scores. VGF-derived peptide TLQP-21 activates the complement C3a receptor-1 (C3aR1), predominantly expressed in the brain on microglia. However, it is unclear how mouse or human TLQP-21, which are not identical, modulate microglial function and/or AD progression. METHODS: We performed phagocytic/migration assays and RNA sequencing on BV2 microglial cells and primary microglia isolated from wild-type or C3aR1-null mice following treatment with TLQP-21 or C3a super agonist (C3aSA). Effects of intracerebroventricular TLQP-21 delivery were evaluated in 5xFAD mice, a mouse amyloidosis model of AD. Finally, the human HMC3 microglial cell line was treated with human TLQP-21 to determine whether specific peptide functions are conserved from mouse to human. RESULTS: We demonstrate that TLQP-21 increases motility and phagocytic capacity in murine BV2 microglial cells, and in primary wild-type but not in C3aR1-null murine microglia, which under basal conditions have impaired phagocytic function compared to wild-type. RNA sequencing of primary microglia revealed overlapping transcriptomic changes induced by treatment with TLQP-21 or C3a super agonist (C3aSA). There were no transcriptomic changes in C3aR1-null or wild-type microglia exposed to the mutant peptide TLQP-R21A, which does not activate C3aR1. Most of the C3aSA- and TLQP-21-induced differentially expressed genes were linked to cell migration and proliferation. Intracerebroventricular TLQP-21 administration for 28 days via implanted osmotic pump resulted in a reduction of amyloid plaques and associated dystrophic neurites and restored expression of subsets of Alzheimer-associated microglial genes. Finally, we found that human TLQP-21 activates human microglia in a fashion similar to activation of murine microglia by mouse TLQP-21. CONCLUSIONS: These data provide molecular and functional evidence suggesting that mouse and human TLQP-21 modulate microglial function, with potential implications for the progression of AD-related neuropathology.


Asunto(s)
Enfermedad de Alzheimer/patología , Microglía/metabolismo , Fragmentos de Péptidos/metabolismo , Receptores de Complemento/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Transducción de Señal/fisiología
4.
Nat Commun ; 11(1): 3942, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32770063

RESUMEN

Though discovered over 100 years ago, the molecular foundation of sporadic Alzheimer's disease (AD) remains elusive. To better characterize the complex nature of AD, we constructed multiscale causal networks on a large human AD multi-omics dataset, integrating clinical features of AD, DNA variation, and gene- and protein-expression. These probabilistic causal models enabled detection, prioritization and replication of high-confidence master regulators of AD-associated networks, including the top predicted regulator, VGF. Overexpression of neuropeptide precursor VGF in 5xFAD mice partially rescued beta-amyloid-mediated memory impairment and neuropathology. Molecular validation of network predictions downstream of VGF was also achieved in this AD model, with significant enrichment for homologous genes identified as differentially expressed in 5xFAD brains overexpressing VGF. Our findings support a causal role for VGF in protecting against AD pathogenesis and progression.


Asunto(s)
Enfermedad de Alzheimer/etiología , Encéfalo/patología , Factores de Crecimiento Nervioso/metabolismo , Mapas de Interacción de Proteínas , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ratones , Ratones Transgénicos , Factores de Crecimiento Nervioso/genética , Mapeo de Interacción de Proteínas , Proteómica
5.
Medicine (Baltimore) ; 98(32): e16704, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31393374

RESUMEN

The human leukocyte antigen (HLA) genes may play a role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and its progressive form, non-alcoholic steatohepatitis (NASH). The aim of this study was to assess the association of HLA class I and II alleles with NASH and its histological features.Deoxyribonucleic acid (DNA) was extracted from 140 subjects (85 biopsy-proven NAFLD and 55 controls) and genotyped for HLA (-A, -B, -C, -DR1, -DR3, -DQ, and -DP). Liver biopsies were assessed for presence of NASH, degree of fibrosis and inflammation. Multivariate analysis was performed to assess associations between HLA genes and different histologic features of NAFLD.Our data for HLA class I showed that HLA-C*4 was associated with lower risk for histologic NASH and HLA-C*6 was protective against portal fibrosis. Conversely, HLA-B*27 was associated with high-grade hepatic steatosis, while HLA-A*31 was associated with increased risk for advanced fibrosis. Among HLA class II alleles, HLA-DQA1*01 was associated with lower risk for NASH while HLA-DRB1*03 was associated with increased risk for NASH.Our findings indicate that HLA class I and II gene polymorphism may be associated with susceptibility to NASH, fibrosis and other pathologic features and may be involved in the pathogenesis of NAFLD.


Asunto(s)
Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase I/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Adulto , Alelos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/patología , Polimorfismo Genético , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA