RESUMEN
Doped organic semiconductors are critical to emerging device applications, including thermoelectrics, bioelectronics, and neuromorphic computing devices. It is commonly assumed that low conductivities in these materials result primarily from charge trapping by the Coulomb potentials of the dopant counterions. Here, we present a combined experimental and theoretical study rebutting this belief. Using a newly developed doping technique based on ion exchange, we prepare highly doped films with several counterions of varying size and shape and characterize their carrier density, electrical conductivity, and paracrystalline disorder. In this uniquely large data set composed of several classes of high-mobility conjugated polymers, each doped with at least five different ions, we find electrical conductivity to be strongly correlated with paracrystalline disorder but poorly correlated with ionic size, suggesting that Coulomb traps do not limit transport. A general model for interacting electrons in highly doped polymers is proposed and carefully parametrized against atomistic calculations, enabling the calculation of electrical conductivity within the framework of transient localization theory. Theoretical calculations are in excellent agreement with experimental data, providing insights into the disorder-limited nature of charge transport and suggesting new strategies to further improve conductivities.
RESUMEN
Molecular doping is a crucial tool for controlling the charge-carrier concentration in organic semiconductors. Each dopant molecule is commonly thought to give rise to only one polaron, leading to a maximum of one donor:acceptor charge-transfer complex and hence an ionization efficiency of 100%. However, this theoretical limit is rarely achieved because of incomplete charge transfer and the presence of unreacted dopant. Here, we establish that common p-dopants can in fact accept two electrons per molecule from conjugated polymers with a low ionization energy. Each dopant molecule participates in two charge-transfer events, leading to the formation of dopant dianions and an ionization efficiency of up to 200%. Furthermore, we show that the resulting integer charge-transfer complex can dissociate with an efficiency of up to 170%. The concept of double doping introduced here may allow the dopant fraction required to optimize charge conduction to be halved.
RESUMEN
The creation and evolution of nonequilibrium phonons is central in applications ranging from cosmological particle searches to decoherence processes in qubits. However, the fundamental understanding of decoherence pathways for athermal phonon distributions in solid-state systems remains an open question. Using first-principles calculations, we investigate the primary decay channels of athermal phonons in two technologically relevant semiconductors-Si and GaAs. We quantify the contributions of anharmonic, isotopic, and interfacial scattering in these materials. From this, we construct a model to estimate the thermal power in a readout scheme as a function of time. We discuss the implication of our results on noise limitations in current phonon sensor designs and strategies for improving coherence in next-generation phonon sensors.
RESUMEN
Inelastic neutron scattering (INS) provides a weighted density of phonon modes. Currently, INS spectra can only be interpreted for perfectly crystalline materials because of high computational cost for electronic simulations. INS has the potential to provide detailed morphological information if sufficiently large volumes and appropriate structural variety are simulated. Here, we propose a method that allows direct comparison between INS data with molecular dynamics simulations, a simulation method that is frequently used to simulate semicrystalline/amorphous materials. We illustrate the technique by analyzing spectra of a well-studied conjugated polymer, poly(3-hexylthiophene-2,5-diyl) (P3HT) and conclude that our technique provides improved volume and structural variety, but that the classical force field requires improvement before the morphology can be accurately interpreted.
RESUMEN
Doping-induced solubility control (DISC) is a recently introduced photolithographic technique for semiconducting polymers, which utilizes reversible changes in polymer solubility upon doping to allow the polymer to function as its own photoresist. Central to this process is a wavelength sensitive optical dedoping reaction, which is poorly understood but generates subdiffraction-limited topographic features and provides optical control of the polymer doping level. Here, we examine the mechanism of optical dedoping in the semiconducting polymer poly-3-hexylthiophene (P3HT) doped by 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), via a combination of ultrafast and steady-state spectroscopy, ab initio calculations, and multidimensional NMR. A simple photoinduced back electron transfer mechanism from reduced F4TCNQ to oxidized P3HT does not explain the observed photophysics. Instead, photoexcited F4TCNQ* reacts with THF solvent molecules to form a neutral, nondoping, and highly soluble F4TCNQ-THF complex. Hence, ionized F4TCNQ is removed from the P3HT indirectly by depletion of the neutral F4TCNQ. Because the reaction involves only the dopant and similar photoreactivity would expected for most other dopant molecules, we expect optical DISC patterning should be generalizable to a wide range of polymer:dopant systems.