Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
PLoS Genet ; 10(8): e1004506, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25101763

RESUMEN

The RNase P family is a diverse group of endonucleases responsible for the removal of 5' extensions from tRNA precursors. The diversity of enzyme forms finds its extremes in the eukaryal nucleus where RNA-based catalysis by complex ribonucleoproteins in some organisms contrasts with single-polypeptide enzymes in others. Such structural contrast suggests associated functional differences, and the complexity of the ribonucleoprotein was indeed proposed to broaden the enzyme's functionality beyond tRNA processing. To explore functional overlap and differences between most divergent forms of RNase P, we replaced the nuclear RNase P of Saccharomyces cerevisiae, a 10-subunit ribonucleoprotein, with Arabidopsis thaliana PRORP3, a single monomeric protein. Surprisingly, the RNase P-swapped yeast strains were viable, displayed essentially unimpaired growth under a wide variety of conditions, and, in a certain genetic background, their fitness even slightly exceeded that of the wild type. The molecular analysis of the RNase P-swapped strains showed a minor disturbance in tRNA metabolism, but did not point to any RNase P substrates or functions beyond that. Altogether, these results indicate the full functional exchangeability of the highly dissimilar enzymes. Our study thereby establishes the RNase P family, with its combination of structural diversity and functional uniformity, as an extreme case of convergent evolution. It moreover suggests that the apparently gratuitous complexity of some RNase P forms is the result of constructive neutral evolution rather than reflecting increased functional versatility.


Asunto(s)
Evolución Molecular , Flujo Genético , Precursores del ARN/genética , Ribonucleasa P/genética , Arabidopsis , Catálisis , Precursores del ARN/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribonucleasa P/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae
2.
Traffic ; 13(1): 157-67, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21951626

RESUMEN

The organization of eukaryotic cells into membrane-bound compartments must be faithfully sustained for survival of the cell. A subtle equilibrium exists between the degradation and the proliferation of organelles. Commonly, proliferation is initiated by a membrane remodeling process. Here, we dissect the function of proteins driving organelle proliferation in the particular case of peroxisomes. These organelles are formed either through a growth and division process from existing peroxisomes or de novo from the endoplasmic reticulum (ER). Among the proteins involved in the biogenesis of peroxisomes, peroxins, members of the Pex11 protein family participate in peroxisomal membrane alterations. In the yeast Saccharomyces cerevisiae, the Pex11 family consists of three proteins, Pex11p, Pex25p and Pex27p. Here we demonstrate that yeast mutants lacking peroxisomes require the presence of Pex25p to regenerate this organelle de novo. We also provide evidence showing that Pex27p inhibits peroxisomal function and illustrate that Pex25p initiates elongation of the peroxisomal membrane. Our data establish that although structurally conserved each of the three Pex11 protein family members plays a distinct role. While ScPex11p promotes the proliferation of peroxisomes already present in the cell, ScPex25p initiates remodeling at the peroxisomal membrane and ScPex27p acts to counter this activity. In addition, we reveal that ScPex25p acts in concert with Pex3p in the initiation of de novo peroxisome biogenesis from the ER.


Asunto(s)
Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Western Blotting , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Escherichia coli/genética , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutación , Ácido Oléico/farmacología , Tamaño de los Orgánulos , Peroxinas , Peroxisomas/ultraestructura , Plásmidos , Transporte de Proteínas , Reacción en Cadena en Tiempo Real de la Polimerasa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transfección
4.
NPJ Precis Oncol ; 7(1): 109, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884744

RESUMEN

Analysis of selected cancer genes has become an important tool in precision oncology but cannot fully capture the molecular features and, most importantly, vulnerabilities of individual tumors. Observational and interventional studies have shown that decision-making based on comprehensive molecular characterization adds significant clinical value. However, the complexity and heterogeneity of the resulting data are major challenges for disciplines involved in interpretation and recommendations for individualized care, and limited information exists on how to approach multilayered tumor profiles in clinical routine. We report our experience with the practical use of data from whole-genome or exome and RNA sequencing and DNA methylation profiling within the MASTER (Molecularly Aided Stratification for Tumor Eradication Research) program of the National Center for Tumor Diseases (NCT) Heidelberg and Dresden and the German Cancer Research Center (DKFZ). We cover all relevant steps of an end-to-end precision oncology workflow, from sample collection, molecular analysis, and variant prioritization to assigning treatment recommendations and discussion in the molecular tumor board. To provide insight into our approach to multidimensional tumor profiles and guidance on interpreting their biological impact and diagnostic and therapeutic implications, we present case studies from the NCT/DKFZ molecular tumor board that illustrate our daily practice. This manual is intended to be useful for physicians, biologists, and bioinformaticians involved in the clinical interpretation of genome-wide molecular information.

5.
J Cell Sci ; 123(Pt 19): 3389-400, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20826455

RESUMEN

Dynamic changes of membrane structure are intrinsic to organelle morphogenesis and homeostasis. Ectopic expression of proteins of the PEX11 family from yeast, plant or human lead to the formation of juxtaposed elongated peroxisomes (JEPs),which is evocative of an evolutionary conserved function of these proteins in membrane tubulation. Microscopic examinations reveal that JEPs are composed of independent elongated peroxisomes with heterogeneous distribution of matrix proteins. We established the homo- and heterodimerization properties of the human PEX11 proteins and their interaction with the fission factor hFis1, which is known to recruit the GTPase DRP1 to the peroxisomal membrane. We show that excess of hFis1 but not of DRP1 is sufficient to fragment JEPs into normal round-shaped organelles, and illustrate the requirement of microtubules for JEP formation. Our results demonstrate that PEX11-induced JEPs represent intermediates in the process of peroxisome membrane proliferation and that hFis1 is the limiting factor for progression. Hence, we propose a model for a conserved role of PEX11 proteins in peroxisome maintenance through peroxisome polarization, membrane elongation and segregation.


Asunto(s)
Extensiones de la Superficie Celular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Peroxisomas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Extensiones de la Superficie Celular/patología , Dinaminas , GTP Fosfohidrolasas/metabolismo , Ingeniería Genética , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Peroxisomas/patología , Unión Proteica , Multimerización de Proteína , ARN Interferente Pequeño/genética , Proteínas Recombinantes de Fusión/genética , Saccharomyces cerevisiae , Nicotiana
6.
Cells ; 9(11)2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143123

RESUMEN

Measuring Förster-resonance-energy-transfer (FRET) efficiency allows the investigation of protein-protein interactions (PPI), but extracting quantitative measures of affinity necessitates highly advanced technical equipment or isolated proteins. We demonstrate the validity of a recently suggested novel approach to quantitatively analyze FRET-based experiments in living mammalian cells using standard equipment using the interaction between different type-1 peroxisomal targeting signals (PTS1) and their soluble receptor peroxin 5 (PEX5) as a model system. Large data sets were obtained by flow cytometry coupled FRET measurements of cells expressing PTS1-tagged EGFP together with mCherry fused to the PTS1-binding domain of PEX5, and were subjected to a fitting algorithm extracting a quantitative measure of the interaction strength. This measure correlates with results obtained by in vitro techniques and a two-hybrid assay, but is unaffected by the distance between the fluorophores. Moreover, we introduce a live cell competition assay based on this approach, capable of depicting dose- and affinity-dependent modulation of the PPI. Using this system, we demonstrate the relevance of a sequence element next to the core tripeptide in PTS1 motifs for the interaction strength between PTS1 and PEX5, which is supported by a structure-based computational prediction of the binding energy indicating a direct involvement of this sequence in the interaction.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Señales de Direccionamiento al Peroxisoma , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Competencia Celular , Supervivencia Celular , Células HeLa , Humanos , Ratones , Modelos Moleculares , Péptidos/química , Péptidos/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/química , Unión Proteica , Dominios Proteicos
7.
Biochim Biophys Acta ; 1783(5): 864-73, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18346465

RESUMEN

Tetratricopeptide (TPR)-domain proteins are involved in various cellular processes. The TPR domain is known to be responsible for interaction with other proteins commonly recognizing sequence motifs at the C-termini. One such TPR-protein, TRIP8b, was originally identified in rat as an interaction partner of Rab8b, and its human orthologue as a protein related to the peroxisomal targeting signal 1 (PTS1) receptor Pex5p (Pex5Rp). Somewhat later, the mouse orthologue was reported to bind the hyperpolarization-activated, cyclic nucleotide-regulated HCN channels, and, very recently, the rat orthologue was shown to interact with latrophilin 1, the calcium-independent receptor of alpha-latrotoxin. Here we employed various methodological approaches to investigate and compare the binding specificities of the human PTS1 receptor Pex5p and the related protein Pex5Rp/TRIP8b towards a subset of targets, including Rab8b and various C-termini resembling PTS1. The results show that the TPR domains of Pex5p and Pex5Rp/TRIP8b have distinct but overlapping substrate specificities. This suggests that selectivity in the recognition of substrates by the TPR domains of Pex5p and Pex5Rp/TRIP8b is a matter of considerable complexity, and that no single determinant appears to be sufficient in unambiguously defining a binding target for either protein. This idea is further corroborated by our observations that changes in the surrounding residues or the conformational state of one of the binding partners can profoundly alter their binding activities. The implications of these findings for the possible peroxisome-related functions of Pex5Rp/TRIP8b are discussed.


Asunto(s)
Proteínas Oncogénicas/metabolismo , Peroxisomas/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Animales , Células CHO , Cricetinae , Cricetulus , Ratones , Modelos Moleculares , Proteínas Oncogénicas/química , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Unión Proteica , Señales de Clasificación de Proteína , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/metabolismo , Homología Estructural de Proteína , Proteínas de Unión al GTP rab
8.
Dtsch Med Wochenschr ; 144(6): 394-397, 2019 03.
Artículo en Alemán | MEDLINE | ID: mdl-30870870

RESUMEN

HISTORY AND CLINICAL FINDINGS: A 72-year-old female presented with a therapy-resistant diarrhea. EXAMINATIONS: In the case of negative stool cultures and inconspicuous radiological imaging, further endoscopic diagnostics were performed. Histological implicated the image of a celiac disease in the duodenum and lymphocytic colitis reaching into the terminal ileum. In the case of negative antibody detection for celiac disease, a medication side effect was considered by differential diagnosis. TREATMENT: When olmesartan was discontinued, she developed a rapid improvement of the symptoms. CONCLUSION AND DIAGNOSIS: For the angiotensin receptor antagonist olmesartan, the occurrence of a sprue-like enteropathy has rarely described. Microscopic colitis is an exception.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/efectos adversos , Diarrea , Imidazoles/efectos adversos , Enfermedades Intestinales , Tetrazoles/efectos adversos , Anciano , Presión Sanguínea , Enfermedad Celíaca , Diagnóstico Diferencial , Diarrea/inducido químicamente , Diarrea/complicaciones , Duodeno/efectos de los fármacos , Duodeno/patología , Femenino , Humanos , Enfermedades Intestinales/inducido químicamente , Enfermedades Intestinales/complicaciones
9.
Biochim Biophys Acta ; 1763(12): 1565-73, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17007944

RESUMEN

Originally, the peroxisomal targeting signal 1 (PTS1) was defined as a tripeptide at the C-terminus of proteins prone to be imported into the peroxisomal matrix. The corresponding receptor PEX5 initiates the translocation of proteins by identifying potential substrates via their C-termini and trapping PTS1s through remodeling of its TPR domain. Thorough studies on the interaction between PEX5 and PTS1 as well as sequence-analytic tools revealed the influence of amino acid residues further upstream of the ultimate tripeptide. Altogether, PTS1s should be defined as dodecamer sequences at the C-terminal ends of proteins. These sequences accommodate physical contacts with both the surface and the binding cavity of PEX5 and ensure accessibility of the extreme C-terminus. Knowledge-based approaches in applied Bioinformatics provide reliable tools to accurately predict the peroxisomal location of proteins not yet determined experimentally.


Asunto(s)
Peroxisomas/metabolismo , Señales de Clasificación de Proteína , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/metabolismo , Secuencias de Aminoácidos , Animales , Humanos , Bases del Conocimiento , Oligopéptidos/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Estructura Terciaria de Proteína , Especificidad de la Especie
10.
Biochim Biophys Acta ; 1763(12): 1441-52, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17055076

RESUMEN

The glyoxylate cycle provides the means to convert C2-units to C4-precursors for biosynthesis, allowing growth on fatty acids and C2-compounds. The conventional view that the glyoxylate cycle is contained within peroxisomes in fungi and plants is no longer valid. Glyoxylate cycle enzymes are located both inside and outside the peroxisome. Thus, the operation of the glyoxylate cycle requires transport of several intermediates across the peroxisomal membrane. Glyoxylate cycle progression is also dependent upon mitochondrial metabolism. An understanding of the operation and regulation of the glyoxylate cycle, and its integration with cellular metabolism, will require further investigation of the participating metabolite transporters in the peroxisomal membrane.


Asunto(s)
Glioxilatos/metabolismo , Membranas Intracelulares/metabolismo , Peroxisomas/metabolismo , Secuencia de Aminoácidos , Animales , Carbono/metabolismo , Compartimento Celular , Citosol/metabolismo , Proteínas Fúngicas/metabolismo , Redes y Vías Metabólicas , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA