Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Chem Res Toxicol ; 34(9): 2032-2044, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34427094

RESUMEN

Phosphine (PH3) is a highly toxic, corrosive, flammable, heavier-than-air gas that is a commonly used fumigant. When used as a fumigant, PH3 can be released from compressed gas tanks or produced from commercially available metal phosphide tablets. Although the mechanism of toxicity is unclear, PH3 is thought to be a metabolic poison. PH3 exposure induces multiorgan toxicity, and no effective antidotes or therapeutics have been identified. Current medical treatment consists largely of supportive care and maintenance of cardiovascular function. To better characterize the mechanism(s) driving PH3-induced toxicity, we have performed transcriptomic analysis on conscious adult male Sprague-Dawley rats following whole-body inhalation exposure to phosphine gas at various concentration-time products. PH3 exposure induced concentration- and time-dependent changes in gene expression across multiple tissues. These gene expression changes were mapped to pathophysiological responses using molecular pathway analysis. Toxicity pathways indicative of cardiac dysfunction, cardiac arteriopathy, and cardiac enlargement were identified. These cardiotoxic responses were linked to apelin-mediated cardiomyocyte and cardiac fibroblast signaling pathways. Evaluation of gene expression changes in blood revealed alterations in pathways associated with the uptake, transport, and utilization of iron. Altered erythropoietin signaling was also observed in the blood. Upstream regulator analysis identified several therapeutics predicted to counteract PH3-induced gene expression changes. These include antihypertensive drugs (losartan, candesartan, and prazosin) and therapeutics to reduce pathological cardiac remodeling (curcumin and TIMP3). This transcriptomics study has characterized molecular pathways involved in PH3-induced cardiotoxicity. These data will aid in elucidating a precise mechanism of toxicity for PH3 and guide the development of effective medical countermeasures for PH3-induced toxicity.


Asunto(s)
Plaguicidas/toxicidad , Fosfinas/toxicidad , Rodenticidas/toxicidad , Transcriptoma/efectos de los fármacos , Administración por Inhalación , Animales , Antihipertensivos/farmacología , Apelina/metabolismo , Cardiomegalia/inducido químicamente , Cardiotónicos/farmacología , Cardiotoxicidad/genética , Cardiotoxicidad/metabolismo , Corazón/efectos de los fármacos , Masculino , Fosfinas/administración & dosificación , Ratas Sprague-Dawley , Rodenticidas/administración & dosificación , Transducción de Señal/efectos de los fármacos
2.
Toxicol Appl Pharmacol ; 329: 1-8, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28527914

RESUMEN

We determined whether a decrease in hepatic microsomal cytochrome P450 activity would impact lung toxicity induced by inhalation exposure to naphthalene (NA), a ubiquitous environmental pollutant. The liver-Cpr-null (LCN) mouse showed decreases in microsomal metabolism of NA in liver, but not lung, compared to wild-type (WT) mouse. Plasma levels of NA and NA-glutathione conjugates (NA-GSH) were both higher in LCN than in WT mice after a 4-h nose-only NA inhalation exposure at 10ppm. Levels of NA were also higher in lung and liver of LCN, compared to WT, mice, following exposure to NA at 5 or 10ppm. Despite the large increase in circulating and lung tissue NA levels, the level of NA-GSH, a biomarker of NA bioactivation, was either not different, or only slightly higher, in lung and liver tissues of LCN mice, relative to that in WT mice. Furthermore, the extent of NA-induced acute airway injury, judging from high-resolution lung histopathology and morphometry at 20h following NA exposure, was not higher, but lower, in LCN than in WT mice. These results, while confirming the ability of extrahepatic organ to bioactivate inhaled NA and mediate NA's lung toxicity, suggest that liver P450-generated NA metabolites also have a significant, although relatively small, contribution to airway toxicity of inhaled NA. This hepatic contribution to the airway toxicity of inhaled NA may be an important risk factor for individuals with diminished bioactivation activity in the lung.


Asunto(s)
Lesión Pulmonar Aguda/inducido químicamente , Sistema Enzimático del Citocromo P-450/metabolismo , Contaminantes Ambientales/toxicidad , Exposición por Inhalación/efectos adversos , Hígado/enzimología , Pulmón/efectos de los fármacos , Naftalenos/toxicidad , Lesión Pulmonar Aguda/enzimología , Lesión Pulmonar Aguda/patología , Animales , Biotransformación , Contaminantes Ambientales/administración & dosificación , Contaminantes Ambientales/sangre , Contaminantes Ambientales/farmacocinética , Genotipo , Glutatión/sangre , Pulmón/patología , Masculino , Ratones Noqueados , Microsomas Hepáticos/enzimología , NADPH-Ferrihemoproteína Reductasa/deficiencia , NADPH-Ferrihemoproteína Reductasa/genética , Naftalenos/administración & dosificación , Naftalenos/sangre , Naftalenos/farmacocinética , Fenotipo , Medición de Riesgo
3.
Drug Metab Dispos ; 42(8): 1341-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24907355

RESUMEN

CYP2A13, CYP2B6, and CYP2F1 are neighboring cytochrome P450 genes on human chromosome 19, and the enzymes that they encode overlap in substrate specificity. A CYP2A13/2B6/2F1-transgenic mouse, in which CYP2A13 and 2F1 are both expressed in the respiratory tract and CYP2B6 is expressed in the liver, was recently generated. We generated a CYP2A13 (only) transgenic mouse so that the specific activity of CYP2A13 can be determined. The CYP2B6 and CYP2F1 genes in the CYP2A13/2B6/2F1 genomic clone were inactivated via genetic manipulations, and CYP2A13 was kept intact. A CYP2A13 (only) transgenic (2A13-TG) mouse was generated using the engineered construct and then characterized to confirm transgene integrity and determine copy numbers. The 2A13-TG mice were normal in gross morphology, development, and fertility. As in the CYP2A13/2B6/2F1-transgenic mouse, CYP2A13 expression in the 2A13-TG mouse was limited to the respiratory tract; in contrast, CYP2B6 and 2F1 proteins were not detected. Additional studies using the CYP2A13-humanized (2A13-TG/Cyp2abfgs-null) mouse produced by intercrossing between 2A13-TG and Cyp2abfgs-null mice confirmed that the transgenic CYP2A13 is active in the bioactivation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a lung procarcinogen. The 2A13-TG mouse should be valuable for assessing specific roles of human CYP2A13 in xenobiotic toxicity in the respiratory tract.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/genética , Hidrocarburo de Aril Hidroxilasas/metabolismo , Ratones Transgénicos/genética , Ratones Transgénicos/metabolismo , Animales , Modelos Animales de Enfermedad , Dosificación de Gen/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sistema Respiratorio/enzimología , Sistema Respiratorio/metabolismo
4.
Ann N Y Acad Sci ; 1479(1): 196-209, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32285953

RESUMEN

Fluoroacetate (FA) is a tasteless, odorless, water-soluble metabolic poison with severe toxicological effects. Characterized in the mid-1900s, it has been used as a rodenticide but is comparably lethal to all mammals. Many countries have restricted its use, and modern-day accidental human exposures are rare, but recently, concerns have been raised about its application as a chemical weapon with no known antidote. A combined treatment of methylene blue (MB), an antioxidant, and monosodium glutamate (MSG), a precursor of the citric acid cycle substrate alpha-ketoglutarate, has been recommended as an effective countermeasure; however, no peer-reviewed articles documenting the efficacy of this therapy have been published. Using a rodent model, we assessed the effects of MB and MSG on the neurologic, cardiac, and pulmonary systems. Transcriptomic analysis was used to elucidate inflammatory pathway activation and guide bioassays, which revealed the advantages and disadvantages of these candidate countermeasures. Results show that MB and MSG can reduce neurologic signs observed in rats exposed to sodium FA and improve some effects of intoxication. However, while this strategy resolved some signs of intoxication, ultimately it was unable to significantly reduce lethality.


Asunto(s)
Fluoroacetatos/envenenamiento , Azul de Metileno/farmacología , Sistema Nervioso , Glutamato de Sodio/farmacología , Animales , Perfilación de la Expresión Génica , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Pulmón/metabolismo , Pulmón/patología , Masculino , Miocardio/metabolismo , Miocardio/patología , Sistema Nervioso/metabolismo , Sistema Nervioso/patología , Ratas , Ratas Sprague-Dawley
5.
Toxicol Sci ; 172(1): 123-131, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31388674

RESUMEN

Many constituents of tobacco smoke (TS) require bioactivation to exert toxic effects; however, few studies have examined the role of bioactivation enzymes in the adverse effects of TS exposure. This knowledge gap is a major source of uncertainty for risk assessment and chemoprevention efforts. Our aim is to test the hypothesis that cytochrome P450 (P450) enzyme-mediated bioactivation is essential to the development of TS exposure-induced lung toxicity, by determining the contributions of P450 enzymes in the mouse Cyp2abfgs gene subfamilies to environmental tobacco smoke (ETS)-induced lung inflammation. Adult female wildtype (WT) and Cyp2abfgs-null mice (both on C57BL/6J background) were exposed to filtered air or ETS, intermittently, for 1 or 2 weeks. Lung inflammation was assessed by quantification of inflammatory cells, cytokines, chemokines, and proteins in bronchoalveolar lavage fluid (BALF) and histopathological analysis. Glutathione (GSH) conjugates of 2 ETS constituents, naphthalene (NA), and 3-methylindole (3MI), were measured in mice exposed to ETS for 4 h. Persistent macrophagic and neutrophilic lung inflammation was observed in ETS-exposed WT mice; the extent of which was significantly reduced in ETS-exposed Cyp2abfgs-null mice. Levels of proinflammatory cytokines and chemokines, along with the total protein concentration, were increased in cell-free BALF from ETS-exposed WT mice, but not Cyp2abfgs-null mice. Additionally, GSH conjugates of NA and 3MI were detected in the lungs of WT, but not Cyp2abfgs-null, mice following ETS exposure. These results provide the first in vivo evidence that the mouse Cyp2abfgs gene cluster plays an important role in ETS-induced lung inflammation.

6.
Toxicol Lett ; 305: 103-109, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30684585

RESUMEN

Naphthalene (NA) is a ubiquitous environmental pollutant and possible human carcinogen that forms tumors in rodents with tissue/regional and species selectivity. This study seeks to determine whether NA is able to directly adduct DNA in an ex vivo culture system. Metabolically active lung tissue was isolated and incubated in explant culture with carbon-14 labeled NA (0, 25, 250 µM) or 1,2-naphthoquinone (NQ), followed by AMS analyses of metabolite binding to DNA. Despite relatively low metabolic bioactivation in the primate airway, dose-dependent NA-DNA adduct formation was detected. More airway adducts were detected in female mice (4.7-fold) and primates (2.1-fold) than in males of the same species. Few adducts were detected in rat airway or nasal epithelium. NQ, which is a metabolic product of NA, proved to be even more potent, with levels of adduct formation 70-80-fold higher than seen when tissues were incubated with the parent compound NA. This is the first study to demonstrate NA-DNA adduct formation at a site of carcinogenesis, the mouse lung. Adducts were also detected in non-human primate lung and with a NQ metabolite of NA. Taken together, this suggests that NA may contribute to in vivo carcinogenesis through a genotoxic mechanism.


Asunto(s)
Pulmón/efectos de los fármacos , Naftalenos/toxicidad , Animales , Carcinogénesis , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Aductos de ADN , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Pulmón/metabolismo , Macaca mulatta , Masculino , Ratones , Ratas , Factores Sexuales , Especificidad de la Especie , Pruebas de Toxicidad
7.
Environ Mol Mutagen ; 58(4): 217-227, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28436563

RESUMEN

P450 activity is required to metabolically activate many chemical carcinogens, rendering them highly genotoxic. CYP3A4 is the most abundantly expressed P450 enzyme in the liver, accounting for most drug metabolism and constituting 50% of all hepatic P450 activity. CYP3A4 is also expressed in extrahepatic tissues, including the intestine. However, the role of CYP3A4 in activating chemical carcinogens into potent genotoxins is unclear. To facilitate efforts to determine whether CYP3A4, per se, can activate carcinogens into potent genotoxins, we expressed human CYP3A4 in the DNA-repair mutant (rad4 rad51) strain of budding yeast Saccharomyces cerevisiae and tested the novel, recombinant yeast strain for ability to report CYP3A4-mediated genotoxicity of a well-known genotoxin, aflatoxin B1 (AFB1 ). Yeast microsomes containing human CYP3A4, but not those that do not contain CYP3A4, were active in hydroxylation of diclofenac, a known CYP3A4 substrate drug, a result confirming CYP3A4 activity in the recombinant yeast strain. In cells exposed to AFB1 , the expression of CYP3A4 supported DNA adduct formation, chromosome rearrangements, cell death, and expression of the large subunit of ribonucleotide reductase, Rnr3, a marker of DNA damage. Expression of CYP3A4 also conferred sensitivity in rad4 rad51 mutants exposed to colon carcinogen, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx). These data confirm the ability of human CYP3A4 to mediate the genotoxicity of AFB1 , and illustrate the usefulness of the CYP3A4-expressing, DNA-repair mutant yeast strain for screening other chemical compounds that are CYP3A4 substrates, for potential genotoxicity. Environ. Mol. Mutagen. 58:217-227, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Citocromo P-450 CYP3A/metabolismo , Pruebas de Mutagenicidad , Saccharomyces cerevisiae/genética , Aflatoxina B1/toxicidad , Citocromo P-450 CYP3A/genética , Aductos de ADN/metabolismo , Daño del ADN , Reparación del ADN , Humanos , Técnicas In Vitro , Recombinación Genética/efectos de los fármacos
8.
Environ Health Perspect ; 125(6): 067004, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28599267

RESUMEN

BACKGROUND: The potential carcinogenicity of naphthalene (NA), a ubiquitous environmental pollutant, in human respiratory tract is a subject of intense debate. Chief among the uncertainties in risk assessment for NA is whether human lung CYP2A13 and CYP2F1 can mediate NA's respiratory tract toxicity. OBJECTIVES: We aimed to assess the in vivo function of CYP2A13 and CYP2F1 in NA bioactivation and NA-induced respiratory tract toxicity in mouse models. METHODS: Rates of microsomal NA bioactivation and the effects of an anti-CYP2A antibody were determined for lung and nasal olfactory mucosa (OM) from Cyp2abfgs-null, CYP2A13-humanized, and CYP2A13/2F1-humanized mice. The extent of NA respiratory toxicity was compared among wild-type, Cyp2abfgs-null, and CYP2A13/2F1-humanized mice following inhalation exposure at an occupationally relevant dose (10 ppm for 4 hr). RESULTS: In vitro studies indicated that the NA bioactivation activities in OM and lung of the CYP2A13/2F1-humanized mice were primarily contributed by, respectively, CYP2A13 and CYP2F1. CYP2A13/2F1-humanized mice showed greater sensitivity to NA than Cyp2abfgs-null mice, with greater depletion of nonprotein sulfhydryl and occurrence of cytotoxicity (observable by routine histology) in the OM, at 2 or 20 hr after termination of NA exposure, in humanized mice. Focal, rather than gross, lung toxicity was observed in Cyp2abfgs-null and CYP2A13/2F1-humanized mice; however, the extent of NA-induced lung injury (shown as volume fraction of damaged cells) was significantly greater in the terminal bronchioles of CYP2A13/2F1-humanized mice than in Cyp2abfgs-null mice. CONCLUSION: CYP2F1 is an active enzyme. Both CYP2A13 and CYP2F1 are active toward NA in the CYP2A13/2F1-humanized mice, where they play significant roles in NA-induced respiratory tract toxicity. https://doi.org/10.1289/EHP844.


Asunto(s)
Familia 2 del Citocromo P450/metabolismo , Naftalenos/toxicidad , Pruebas de Toxicidad , Animales , Carcinógenos/toxicidad , Humanos , Pulmón/metabolismo , Ratones , Ratones Noqueados , Mucosa Nasal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA