Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Bioorg Med Chem Lett ; 26(1): 186-93, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26611920

RESUMEN

Recently, we had identified an unexplored pocket adjacent to the known binding site of allosteric MEK inhibitors which allowed us to design highly potent and in vivo efficacious novel inhibitors. We now report that our initial preclinical candidate, featuring a phenoxy side chain with a sulfamide capping group, displayed human carbonic anhydrase off-target activity and species-dependent blood cell accumulation, which prevented us from advancing this candidate further. Since this sulfamide MEK inhibitor displayed an exceptionally favorable PK profile with low brain penetration potential despite being highly oral bioavailable, we elected to keep the sulfamide capping group intact while taming its unwanted off-target activity by optimizing the structural surroundings. Introduction of a neighboring fluorine atom or installation of a methylene linker reduced hCA potency sufficiently, at the cost of MEK target potency. Switching to a higher fluorinated central core reinstated high MEK potency, leading to two new preclinical candidates with long half-lives, high bioavailabilities, low brain penetration potential and convincing efficacy in a K-Ras-mutated A549 xenograft model.


Asunto(s)
Antineoplásicos/farmacología , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Sulfonamidas/farmacología , Regulación Alostérica/efectos de los fármacos , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Disponibilidad Biológica , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Anhidrasas Carbónicas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Semivida , Humanos , Ratones , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacocinética , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química , Sulfonamidas/farmacocinética , Ensayos Antitumor por Modelo de Xenoinjerto
2.
J Med Chem ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39331123

RESUMEN

Mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1) is a serine/threonine kinase that acts as an immune checkpoint downstream of T-cell receptor stimulation. MAP4K1 activity is enhanced by prostaglandin E2 (PGE2) and transforming growth factor beta (TGFß), immune modulators commonly present in the tumor microenvironment. Therefore, its pharmacological inhibition is an attractive immuno-oncology concept for inducing therapeutic T-cell responses in cancer patients. Here, we describe the systematic optimization of azaindole-based lead compound 1, resulting in the discovery of potent and selective MAP4K1 inhibitor 38 (BAY-405) that displays nanomolar potency in biochemical and cellular assays as well as in vivo exposure after oral dosing. BAY-405 enhances T-cell immunity and overcomes the suppressive effect of PGE2 and TGFß. Treatment of tumor-bearing mice shows T-cell-dependent antitumor efficacy. MAP4K1 inhibition in conjunction with PD-L1 blockade results in a superior antitumor impact, illustrating the complementarity of the single agent treatments.

3.
Sci Rep ; 14(1): 1739, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242973

RESUMEN

The market approval of Tazemetostat (TAZVERIK) for the treatment of follicular lymphoma and epithelioid sarcoma has established "enhancer of zeste homolog 2" (EZH2) as therapeutic target in oncology. Despite their structural similarities and common mode of inhibition, Tazemetostat and other EZH2 inhibitors display differentiated pharmacological profiles based on their target residence time. Here we established high throughput screening methods based on time-resolved fluorescence energy transfer, scintillation proximity and high content analysis microscopy to quantify the biochemical and cellular binding of a chemically diverse collection of EZH2 inhibitors. These assays allowed to further characterize the interplay between EZH2 allosteric modulation by methylated histone tails (H3K27me3) and inhibitor binding, and to evaluate the impact of EZH2's clinically relevant mutant Y641N on drug target residence times. While all compounds in this study exhibited slower off-rates, those with clinical candidate status display significantly slower target residence times in wild type EZH2 and disease-related mutants. These inhibitors interact in a more entropy-driven fashion and show the most persistent effects in cellular washout and antiproliferative efficacy experiments. Our work provides mechanistic insights for the largest cohort of EZH2 inhibitors reported to date, demonstrating that-among several other binding parameters-target residence time is the best predictor of cellular efficacy.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Piridonas , Humanos , Benzamidas , Compuestos de Bifenilo , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Morfolinas , Piridonas/uso terapéutico
4.
Bioorg Med Chem Lett ; 23(8): 2384-90, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23474388

RESUMEN

Using PD325901 as a starting point for identifying novel allosteric MEK inhibitors with high cell potency and long-lasting target inhibition in vivo, truncation of its hydroxamic ester headgroup was combined with incorporation of alkyl and aryl ethers at the neighboring ring position. Whereas alkoxy side chains did not yield sufficient levels of cell potency, specifically substituted aryloxy groups allowed for high enzymatic and cellular potencies. Sulfamide 28 was identified as a highly potent MEK inhibitor with nanomolar cell potency against B-RAF (V600E) as well as Ras-mutated cell lines, high metabolic stability and resulting long half-lives. It was efficacious against B-RAF as well as K-Ras driven xenograft models and showed-despite being orally bioavailable and not a P-glycoprotein substrate-much lower brain/plasma exposure ratios than PD325901.


Asunto(s)
Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Regulación Alostérica , Animales , Benzamidas/química , Benzamidas/farmacología , Difenilamina/análogos & derivados , Difenilamina/química , Difenilamina/farmacología , Diseño de Fármacos , Ratones , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Cancer Discov ; 13(10): 2150-2165, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37712569

RESUMEN

Small-molecule chemical "probes" complement the use of molecular biology techniques to explore, validate, and generate hypotheses on the function of proteins in diseases such as cancer. Unfortunately, the poor selection and use of small-molecule reagents can lead to incorrect conclusions. Here, we illustrate examples of poor chemical tools and suggest best practices for the selection, validation, and use of high-quality chemical probes in cancer research. We also note the complexity associated with tools for novel drug modalities, exemplified by protein degraders, and provide advice and resources to facilitate the independent identification of appropriate small-molecule probes by researchers. SIGNIFICANCE: Validation of biological targets and pathways will be aided by a shared understanding of the criteria of potency, selectivity, and target engagement associated with small-molecule reagents ("chemical probes") that enable that work. Interdisciplinary collaboration between cancer biologists, medicinal chemists, and chemical biologists and the awareness of available resources will reduce misleading data generation and interpretation, strengthen data robustness, and improve productivity in academic and industrial research.


Asunto(s)
Neoplasias , Investigación , Humanos , Proteínas , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
6.
J Med Chem ; 66(14): 9297-9312, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37403870

RESUMEN

Within druggable target space, new small-molecule modalities, particularly covalent inhibitors and targeted degraders, have expanded the repertoire of medicinal chemists. Molecules with such modes of action have a large potential not only as drugs but also as chemical probes. Criteria have previously been established to describe the potency, selectivity, and properties of small-molecule probes that are qualified to enable the interrogation and validation of drug targets. These definitions have been tailored to reversibly acting modulators but fall short in their applicability to other modalities. While initial guidelines have been proposed, we delineate here a full set of criteria for the characterization of covalent, irreversible inhibitors as well as heterobifunctional degraders ("proteolysis-targeting chimeras", or PROTACs) and molecular glue degraders. We propose modified potency and selectivity criteria compared to those for reversible inhibitors. We discuss their relevance and highlight examples of suitable probe and pathfinder compounds.


Asunto(s)
Ubiquitina-Proteína Ligasas , Proteolisis
7.
ChemMedChem ; 18(20): e202300464, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37817354

RESUMEN

The 17th EFMC Short Course on Medicinal Chemistry took place April 23-26, 2023 in Oegstgeest, near Leiden in the Netherlands. It covered for the first time the exciting topic of Targeted Protein Degradation (full title: Small Molecule Protein Degraders: A New Opportunity for Drug Design and Development). The course was oversubscribed, with 35 attendees and 6 instructors mainly from Europe but also from the US and South Africa, and representing both industry and academia. This report summarizes the successful event, key lectures given and topics discussed.


Asunto(s)
Química Farmacéutica , Diseño de Fármacos , Europa (Continente) , Proteolisis , Sudáfrica
8.
Br J Pharmacol ; 180(19): 2500-2513, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37170767

RESUMEN

BACKGROUND AND PURPOSE: First-generation soluble guanylate cyclase (sGC) stimulators have shown clinical benefit in pulmonary hypertension (riociguat) and chronic heart failure (vericiguat). However, given the broad therapeutic opportunities for sGC stimulators, tailored molecules for distinct indications are required. EXPERIMENTAL APPROACH: We report the high-throughput screening (HTS)-based discovery of a second generation of sGC stimulators from a novel imidazo[1,2-a]pyridine lead series. An intense medicinal chemistry programme resulted in the discovery of the sGC stimulator BAY 1165747 (BAY-747). The pharmacokinetic profile of BAY-747 was determined in different species, and it was broadly characterized in pharmacological model systems relevant for vasodilatation and hypertension. KEY RESULTS: BAY-747 is a highly potent sGC stimulator in vitro. In addition, BAY-747 showed an excellent pharmacokinetic profile with long half-life and low peak-to-trough ratio. BAY-747 was investigated in experimental in vivo models of malignant and resistant hypertension (rHT). In spontaneously hypertensive (SH) rats, BAY-747 caused a dose-related and long-lasting decrease in mean arterial blood pressure (MAP). Oral treatment over 12 days resulted in a persistent decrease. BAY-747 provided additional benefit when dosed on top of losartan, amlodipine or spironolactone and even on top of triple combinations of frequently used antihypertensive drugs. In a new canine model of rHT, BAY-747 caused a dose-related and long-lasting (>6 h) MAP decrease. CONCLUSION AND IMPLICATIONS: BAY-747 is a potent, orally available sGC stimulator. BAY-747 shows long-acting pharmacodynamic effects with a very low peak-to-trough ratio. BAY-747 could be a treatment alternative for patients with hypertension, especially those not responding to standard-of-care therapy.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión Pulmonar , Hipertensión , Ratas , Animales , Perros , Guanilil Ciclasa Soluble , Hipertensión/tratamiento farmacológico , Hipertensión Pulmonar/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Vasodilatadores/uso terapéutico
9.
ChemMedChem ; 18(8): e202200615, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36749883

RESUMEN

Herein, we describe a systematic SAR- and SPR-investigation of the peptidomimetic hydroxy-proline based VHL-ligand VH032, from which most to-date published VHL-targeting PROTACs have been derived. This study provides for the first time a consistent data set which allows for direct comparison of structural variations including those which were so far hidden in patent literature. The gained knowledge about improved VHL binders was used to design a small library of highly potent BRD4-degraders comprising different VHL exit vectors. Newly designed degraders showed favorable molecular properties and significantly improved degradation potency compared to MZ1.


Asunto(s)
Proteínas Nucleares , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Ligandos , Proteínas Nucleares/metabolismo , Proteolisis , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
10.
ChemMedChem ; 18(9): e202300002, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36892096

RESUMEN

Hit generation is a crucial step in drug discovery that will determine the speed and chance of success of identifying drug candidates. Many strategies are now available to identify chemical starting points, or hits, and each biological target warrants a tailored approach. In this set of best practices, we detail the essential approaches for target centric hit generation and the opportunities and challenges they come with. We then provide guidance on how to validate hits to ensure medicinal chemistry is only performed on compounds and scaffolds that engage the target of interest and have the desired mode of action. Finally, we discuss the design of integrated hit generation strategies that combine several approaches to maximize the chance of identifying high quality starting points to ensure a successful drug discovery campaign.


Asunto(s)
Química Farmacéutica , Descubrimiento de Drogas , Biología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA