Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 22(23): 4688-97, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23825107

RESUMEN

Mutations in bestrophin-1 (Best1) cause Best vitelliform macular dystrophy (BVMD), a dominantly inherited retinal degenerative disease. Best1 is a homo-oligomeric anion channel localized to the basolateral surface of retinal pigment epithelial (RPE) cells. A number of Best1 mutants mislocalize in Madin-Darby canine kidney (MDCK) cells. However, many proteins traffic differently in MDCK and RPE cells, and MDCK cells do not express endogenous Best1. Thus, effects of Best1 mutations on localization in MDCK cells may not translate to RPE cells. To determine whether BVMD causing mutations affect Best1 localization, we compared localization and oligomerization of Best1 with Best1 mutants V9M, W93C, and R218C. In MDCK cells, Best1 and Best1(R218C) were basolaterally localized. Best1(W93C) and Best1(V9M) accumulated in cells. In cultured fetal human retinal pigment epithelium cells (fhRPE) expressing endogenous Best1, Best1(R218C) and Best1(W93C) were basolateral. Best1(V9M) was intracellular. All three mutants exhibited similar fluorescence resonance energy transfer (FRET) efficiencies to, and co-immunoprecipitated with Best1, indicating unimpaired oligomerization. When human Best1 was expressed in RPE in mouse eyes it was basolaterally localized. However, Best1(V9M) accumulated in intracellular compartments in mouse RPE. Co-expression of Best1 and Best1(W93C) in MDCK cells resulted in basolateral localization of both Best1 and Best1(W93C), but co-expression of Best1 with Best1(V9M) resulted in mislocalization of both proteins. We conclude that different mutations in Best1 cause differential effects on its localization and that this effect varies with the presence or absence of wild-type (WT) Best1. Furthermore, MDCK cells can substitute for RPE when examining the effects of BVMD causing mutations on Best1 localization if co-expressed with WT Best1.


Asunto(s)
Canales de Cloruro/metabolismo , Proteínas del Ojo/metabolismo , Canales Iónicos/metabolismo , Distrofia Macular Viteliforme/patología , Animales , Bestrofinas , Señalización del Calcio , Membrana Celular/metabolismo , Células Cultivadas , Canales de Cloruro/genética , Ojo/metabolismo , Proteínas del Ojo/genética , Regulación de la Expresión Génica , Humanos , Canales Iónicos/genética , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Transporte de Proteínas/genética , Distrofia Macular Viteliforme/genética
2.
Bio Protoc ; 13(13): e4759, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37456334

RESUMEN

In vitro models are essential for investigating the molecular, biochemical, and cell-biological aspects of skeletal muscle. Still, models that utilize cell lines or embryonic cells do not fully recapitulate mature muscle fibers in vivo. Protein function is best studied in mature differentiated tissue, where biological context is maintained, but this is often difficult when reliable detection reagents, such as antibodies, are not commercially available. Exogenous expression of tagged proteins in vivo solves some of these problems, but this approach can be technically challenging because either a mouse must be engineered for each protein of interest or viral vectors are required for adequate levels of expression. While viral vectors can infect target cells following local administration, they carry the risk of genome integration that may interfere with downstream analyses. Plasmids are another accessible expression system, but they require ancillary means of cell penetration; electroporation is a simple physical method for this purpose that requires minimal training or specialized equipment. Here, we describe a method for in vivo plasmid expression in a foot muscle following electroporation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA