Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(7): 1417-1431.e20, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-37001502

RESUMEN

Senescent cell accumulation has been implicated in the pathogenesis of aging-associated diseases, including cancer. The mechanism that prevents the accumulation of senescent cells in aging human organs is unclear. Here, we demonstrate that a virus-immune axis controls the senescent fibroblast accumulation in the human skin. Senescent fibroblasts increased in old skin compared with young skin. However, they did not increase with advancing age in the elderly. Increased CXCL9 and cytotoxic CD4+ T cells (CD4 CTLs) recruitment were significantly associated with reduced senescent fibroblasts in the old skin. Senescent fibroblasts expressed human leukocyte antigen class II (HLA-II) and human cytomegalovirus glycoprotein B (HCMV-gB), becoming direct CD4 CTL targets. Skin-resident CD4 CTLs eliminated HCMV-gB+ senescent fibroblasts in an HLA-II-dependent manner, and HCMV-gB activated CD4 CTLs from the human skin. Collectively, our findings demonstrate HCMV reactivation in senescent cells, which CD4 CTLs can directly eliminate through the recognition of the HCMV-gB antigen.


Asunto(s)
Antineoplásicos , Infecciones por Citomegalovirus , Humanos , Anciano , Citomegalovirus , Linfocitos T Citotóxicos , Antígenos HLA , Linfocitos T CD4-Positivos , Senescencia Celular
2.
J Biol Chem ; 300(4): 107173, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499149

RESUMEN

Sunlight exposure results in an inflammatory reaction of the skin commonly known as sunburn, which increases skin cancer risk. In particular, the ultraviolet B (UVB) component of sunlight induces inflammasome activation in keratinocytes to instigate the cutaneous inflammatory responses. Here, we explore the intracellular machinery that maintains skin homeostasis by suppressing UVB-induced inflammasome activation in human keratinocytes. We found that pharmacological inhibition of autophagy promoted UVB-induced NLRP3 inflammasome activation. Unexpectedly, however, gene silencing of Atg5 or Atg7, which are critical for conventional autophagy, had no effect, whereas gene silencing of Beclin1, which is essential not only for conventional autophagy but also for Atg5/Atg7-independent alternative autophagy, promoted UVB-induced inflammasome activation, indicating an involvement of alternative autophagy. We found that damaged mitochondria were highly accumulated in UVB-irradiated keratinocytes when alternative autophagy was inhibited, and they appear to be recognized by NLRP3. Overall, our findings indicate that alternative autophagy, rather than conventional autophagy, suppresses UVB-induced NLRP3 inflammasome activation through the clearance of damaged mitochondria in human keratinocytes and illustrate a previously unknown involvement of alternative autophagy in inflammation. Alternative autophagy may be a new therapeutic target for sunburn and associated cutaneous disorders.


Asunto(s)
Autofagia , Inflamasomas , Queratinocitos , Mitocondrias , Proteína con Dominio Pirina 3 de la Familia NLR , Rayos Ultravioleta , Humanos , Autofagia/efectos de la radiación , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Beclina-1/metabolismo , Beclina-1/genética , Inflamasomas/metabolismo , Queratinocitos/metabolismo , Queratinocitos/patología , Queratinocitos/efectos de la radiación , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Rayos Ultravioleta/efectos adversos , Células Cultivadas
3.
Nature ; 575(7783): 519-522, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31666702

RESUMEN

Immunosuppression increases the risk of cancers that are associated with viral infection1. In particular, the risk of squamous cell carcinoma of the skin-which has been associated with beta human papillomavirus (ß-HPV) infection-is increased by more than 100-fold in immunosuppressed patients2-4. Previous studies have not established a causative role for HPVs in driving the development of skin cancer. Here we show that T cell immunity against commensal papillomaviruses suppresses skin cancer in immunocompetent hosts, and the loss of this immunity-rather than the oncogenic effect of HPVs-causes the markedly increased risk of skin cancer in immunosuppressed patients. To investigate the effects of papillomavirus on carcinogen-driven skin cancer, we colonized several strains of immunocompetent mice with mouse papillomavirus type 1 (MmuPV1)5. Mice with natural immunity against MmuPV1 after colonization and acquired immunity through the transfer of T cells from immune mice or by MmuPV1 vaccination were protected against skin carcinogenesis induced by chemicals or by ultraviolet radiation in a manner dependent on CD8+ T cells. RNA and DNA in situ hybridization probes for 25 commensal ß-HPVs revealed a significant reduction in viral activity and load in human skin cancer compared with the adjacent healthy skin, suggesting a strong immune selection against virus-positive malignant cells. Consistently, E7 peptides from ß-HPVs activated CD8+ T cells from unaffected human skin. Our findings reveal a beneficial role for commensal viruses and establish a foundation for immune-based approaches that could block the development of skin cancer by boosting immunity against the commensal HPVs present in all of our skin.


Asunto(s)
Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/prevención & control , Papillomaviridae/inmunología , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/virología , Neoplasias Cutáneas/prevención & control , Neoplasias Cutáneas/virología , Simbiosis , Anciano , Anciano de 80 o más Años , Animales , Linfocitos T CD8-positivos/inmunología , Carcinogénesis/efectos de la radiación , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/virología , Femenino , Humanos , Huésped Inmunocomprometido/inmunología , Masculino , Ratones , Persona de Mediana Edad , Oncogenes , Papillomaviridae/genética , Papillomaviridae/patogenicidad , ARN Viral/análisis , ARN Viral/genética , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Rayos Ultravioleta
4.
Biochem Biophys Res Commun ; 725: 150266, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-38878759

RESUMEN

Cisplatin (CDDP) is a platinum-based anticancer drug widely prescribed for its effectiveness in treating various forms of cancer. However, its major side effect is nephrotoxicity. Although several methods have been developed to mitigate CDDP-induced nephrotoxicity, an optimal approach has yet to be established. This study aimed to investigate the "chronotoxicity" of CDDP as a potential strategy to reduce its side effects. Male ICR mice were treated with CDDP (20 mg/kg, intraperitoneal injection, one shot) at zeitgeber time (ZT) 2 or ZT14 (light or dark phase). After 72 h, we collected plasma and kidney and evaluated several markers. We found that body weight change between ZT2 and ZT14 by CDDP was comparable. In contrast, many toxicological factors, such as plasma blood urine nitrogen, plasma creatinine, renal oxidative stress (malondialdehyde), DNA damage (γH2AX), acute kidney injury biomarker (KIM-1), and inflammation (Tnfα), were significantly induced at ZT14 compared to than that of ZT2. Our present data suggested that chronotoxicology might provide beneficial information on the importance of administration timings for toxic evaluations and unacceptable side effects.


Asunto(s)
Antineoplásicos , Ritmo Circadiano , Cisplatino , Riñón , Ratones Endogámicos ICR , Animales , Cisplatino/toxicidad , Masculino , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Antineoplásicos/toxicidad , Antineoplásicos/efectos adversos , Ratones , Ritmo Circadiano/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Enfermedades Renales/patología
5.
Pediatr Crit Care Med ; 25(2): 147-158, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37909825

RESUMEN

OBJECTIVES: Extremes of patient body mass index are associated with difficult intubation and increased morbidity in adults. We aimed to determine the association between being underweight or obese with adverse airway outcomes, including adverse tracheal intubation (TI)-associated events (TIAEs) and/or severe peri-intubation hypoxemia (pulse oximetry oxygen saturation < 80%) in critically ill children. DESIGN/SETTING: Retrospective cohort using the National Emergency Airway for Children registry dataset of 2013-2020. PATIENTS: Critically ill children, 0 to 17 years old, undergoing TI in PICUs. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Registry data from 24,342 patients who underwent TI between 2013 and 2020 were analyzed. Patients were categorized using the Centers for Disease Control and Prevention weight-for-age chart: normal weight (5th-84th percentile) 57.1%, underweight (< 5th percentile) 27.5%, overweight (85th to < 95th percentile) 7.2%, and obese (≥ 95th percentile) 8.2%. Underweight was most common in infants (34%); obesity was most common in children older than 8 years old (15.1%). Underweight patients more often had oxygenation and ventilation failure (34.0%, 36.2%, respectively) as the indication for TI and a history of difficult airway (16.7%). Apneic oxygenation was used more often in overweight and obese patients (19.1%, 19.6%) than in underweight or normal weight patients (14.1%, 17.1%; p < 0.001). TIAEs and/or hypoxemia occurred more often in underweight (27.1%) and obese (24.3%) patients ( p < 0.001). TI in underweight children was associated with greater odds of adverse airway outcome compared with normal weight children after adjusting for potential confounders (underweight: adjusted odds ratio [aOR], 1.09; 95% CI, 1.01-1.18; p = 0.016). Both underweight and obesity were associated with hypoxemia after adjusting for covariates and site clustering (underweight: aOR, 1.11; 95% CI, 1.02-1.21; p = 0.01 and obesity: aOR, 1.22; 95% CI, 1.07-1.39; p = 0.002). CONCLUSIONS: In underweight and obese children compared with normal weight children, procedures around the timing of TI are associated with greater odds of adverse airway events.


Asunto(s)
Enfermedad Crítica , Obesidad Infantil , Lactante , Niño , Humanos , Recién Nacido , Preescolar , Adolescente , Estudios Retrospectivos , Sobrepeso/etiología , Obesidad Infantil/complicaciones , Obesidad Infantil/epidemiología , Delgadez/complicaciones , Delgadez/epidemiología , Intubación Intratraqueal/efectos adversos , Intubación Intratraqueal/métodos , Hipoxia/epidemiología , Hipoxia/etiología , Sistema de Registros
6.
Amino Acids ; 54(8): 1203-1213, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35715620

RESUMEN

Moderate oxidative stress induces temporal impairment in mitochondrial ATP production. As glutathione (GSH) content is reduced to eliminate oxidative stress by oxidation-reduction reaction, intracellular GSH content is crucial for maintaining mitochondrial function under oxidative stress. GSH precursors such as N-acetyl cysteine (NAC) and cysteine are known to suppress oxidative stress based on the supply of cysteine residues being rate-limiting for GSH synthesis. However, it remains unclear whether cystine (Cys2) can suppress mitochondrial dysfunction under oxidative stress conditions. Therefore, we examined whether Cys2 could attenuate mitochondrial dysfunction under moderate oxidative stress without scavenging reactive oxygen species (ROS) in the medium. C2C12 myotubes were incubated for 120 min in a Cys2-supplemented medium and subsequently exposed to hydrogen peroxide (H2O2). Heme oxygenase-1 (HO-1) gene expression, intracellular cysteine and GSH content, intracellular ATP level, and maximal mitochondrial respiration were assessed. Cys2 treatment significantly increased GSH content in a dose-dependent manner under oxidative stress. Cys2 treatment significantly decreased HO-1 expression induced by H2O2 exposure. In addition, maximal mitochondrial respiration rate was decreased by H2O2 exposure, but improved by Cys2 treatment. In conclusion, Cys2 treatment mitigates oxidative stress-induced mitochondrial dysfunction by maintaining GSH content under moderate oxidative stress without scavenging ROS in the medium.


Asunto(s)
Cistina , Peróxido de Hidrógeno , Acetilcisteína/farmacología , Adenosina Trifosfato/metabolismo , Apoptosis , Cistina/farmacología , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
7.
BMC Oral Health ; 22(1): 336, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945519

RESUMEN

BACKGROUND: Marfan syndrome (MFS) is a systemic disorder of connective tissues caused by insufficient elastic fiber formation that leads to structural weakness and results in various tissue disorders, including cardiovascular and periodontal disease. Notably however, the risk of periodontal disease in MFS patients affected by an aortic aneurysm or dissection has not yet been clarified. METHODS: We investigated the periodontal condition in the following three groups: MFS patients diagnosed with an aortic aneurysm or dissection with a planned aortic surgery (MFS surgery), MFS patients who had already undergone aortic surgery (MFS post-surgery) and healthy control patients (Healthy). The periodontal condition of all of these patients was evaluated at their first visit, reassessed again at two-month after the first visit, and evaluated again at a six-month follow-up after the reassessment. RESULTS: A total of 14 participants, 3 MFS surgery patients, 4 MFS post-surgery patients and 7 healthy control volunteers were examined. Saliva examinations revealed no significant differences between any of the groups at the first visit, reassessment, or follow-up. Interestingly, the MFS surgery cases showed a higher BOP and PISA at the first visit and follow-up compared with the other groups. In contrast, the MFS surgery patients showed an improvement in their LVDd and EF values, both markers of cardiac function, at the reassessment and follow-up compared with the first visit. CONCLUSIONS: MFS associated with an aortic aneurysm or dissection leads to a higher risk of periodontal disease, indicating the need for more frequent oral hygiene maintenance in these patients. In addition, MFS patients who undergo frequent professional cleaning of their teeth show a lower onset of cardiovascular disease, suggesting that professional oral hygiene in these cases contributes to a healthier condition.


Asunto(s)
Aneurisma de la Aorta , Disección Aórtica , Síndrome de Marfan , Enfermedades Periodontales , Disección Aórtica/complicaciones , Disección Aórtica/cirugía , Aneurisma de la Aorta/etiología , Aneurisma de la Aorta/cirugía , Humanos , Síndrome de Marfan/complicaciones , Enfermedades Periodontales/complicaciones
8.
Amino Acids ; 53(7): 1021-1032, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33991253

RESUMEN

Intestinal oxidative stress produces pro-inflammatory cytokines, which increase tight junction (TJ) permeability, leading to intestinal and systemic inflammation. Cystine (Cys2) is a substrate of glutathione (GSH) and inhibits inflammation, however, it is unclear whether Cys2 locally improves intestinal barrier dysfunction. Thus, we investigated the local effects of Cys2 on oxidative stress-induced TJ permeability and intestinal inflammatory responses. Caco-2 cells were cultured in a Cys2-supplemented medium for 24 h and then treated with H2O2 for 2 h. We assessed TJ permeability by measuring transepithelial electrical resistance and the paracellular flux of fluorescein isothiocyanate-dextran 4 kDa. We measured the concentration of Cys2 and GSH after Cys2 pretreatment. The mRNA expression of pro-inflammatory cytokines was assessed. In addition, the levels of TJ proteins were assessed by measuring the expression of TJ proteins in the whole cells and the ratio of TJ proteins in the detergent-insoluble fractions to soluble fractions (IS/S ratio). Cys2 treatment reduced H2O2-induced TJ permeability. Cys2 did not change the expression of TJ proteins in the whole cells, however, suppressed the IS/S ratio of claudin-4. Intercellular levels of Cys2 and GSH significantly increased in cells treated with Cys2. Cys2 treatment suppressed the mRNA expression of pro-inflammatory cytokines, and the mRNA levels were significantly correlated with TJ permeability. In conclusion, Cys2 treatment locally reduced oxidative stress-induced intestinal barrier dysfunction possively due to the mitigation of claudin-4 dislocalization. Furthermore, the effect of Cys2 on the improvement of intestinal barrier function is related to the local suppression of oxidative stress-induced pro-inflammatory responses.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Cistina/farmacología , Peróxido de Hidrógeno/efectos adversos , Inflamación/prevención & control , Mucosa Intestinal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Uniones Estrechas/efectos de los fármacos , Células CACO-2 , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Oxidantes/efectos adversos
9.
BMC Oral Health ; 21(1): 177, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33827540

RESUMEN

BACKGROUND: We established an in vivo intraradicular biofilm model of apical periodontitis in pigs in which we compared the efficacy of different irrigant activation techniques for biofilm removal. METHODS: Twenty roots from the deciduous mandibular second premolar of 5 male pigs were used. After pulpectomy, canals were left open for 2 weeks and then sealed for 4 weeks to enable the development of an intracanal biofilm. The intraradicular biofilms was evaluated using SEM and bacterial 16S rRNA gene-sequencing. To investigate the efficacy of biofilm removal, root canal irrigations were performed using conventional needle, passive ultrasonic, subsonic, or laser-activated irrigation. Real-time PCR was conducted to quantitate the remaining biofilm components. Statistical analysis was performed using ANOVA followed by a Tukey kramer post-hoc test with α = 0.05. RESULTS: The pulp exposure model was effective in inducing apical periodontitis and SEM analysis revealed a multi-layer biofilm formation inside the root canal. 16S rRNA sequence analysis identified Firmicutes, Bacteroidetes, and Fusobacteria as the predominant bacterial phyla components, which is similar to the microbiome profile seen in humans. None of the tested irrigation techniques completely eradicated the biofilm components from the root canal, but the subsonic and laser-activated irrigation methods produced the lowest bacterial counts (p < 0.05). CONCLUSIONS: An experimental intraradicular biofilm model has been successfully established in pigs. Within the limitations of the study, subsonic or laser-activated irrigation demonstrated the best biofilm removal results in the pig system.


Asunto(s)
Cavidad Pulpar , Irrigantes del Conducto Radicular , Animales , Biopelículas , Masculino , ARN Ribosómico 16S/genética , Preparación del Conducto Radicular , Hipoclorito de Sodio , Porcinos , Irrigación Terapéutica
11.
Inorg Chem ; 56(9): 4928-4936, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28394567

RESUMEN

We have synthesized two luminescent mononuclear Cu(I) complexes, [Cu(PPh2Tol)(THF)(4Mepy)2](BF4) (1) and [Cu(PPh2Tol)(4Mepy)3](BF4) (2) (PPh2Tol = diphenyl(o-tolyl)phosphine, 4Mepy = 4-methylpyridine, THF = tetrahydrofuran), and investigated their crystal structures, luminescence properties, and vapor-induced ligand exchange reactions in the solid state. Both coordination complexes are tetrahedral, but one of the three 4Mepy ligands of complex 2 is replaced by a THF solvent molecule in complex 1. In contrast to the very weak blue emission of the THF-bound complex 1 (wavelength of emission maximum (λem) = 457 nm, emission quantum yield (Φem) = 0.02) in the solid state at room temperature, a very bright blue-green emission was observed for 2 (λem = 484 nm, Φem = 0.63), suggesting a contribution of the THF ligand to nonradiative deactivation. Time-dependent density functional theory calculations and emission lifetime measurements suggest that the room-temperature emissions of the complexes are due to thermally activated delayed fluorescence from the metal-to-ligand charge transfer excited state. Interestingly, by exposing the solid sample of THF-bound 1 to 4Mepy vapor, the emission intensity drastically increased and the emission color changed from blue to blue-green. Powder X-ray diffraction measurements revealed that the emission change of 1 is due to the vapor-induced ligand exchange of THF for 4Mepy, forming the strongly emissive complex 2. Further emission tuning was achieved by exposing 1 to pyrimidine or pyrazine vapors, forming green (λem = 510 nm) or orange (λem = 618 nm) emissive complexes, respectively. These results suggest that the vapor-induced ligand exchange is a promising method to control the emission color of luminescent Cu(I) complexes.

12.
Biochem Biophys Res Commun ; 477(3): 329-35, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27343554

RESUMEN

Ultraviolet (UV) radiation in sunlight can result in DNA damage and an inflammatory reaction of the skin commonly known as sunburn, which in turn can lead to cutaneous tissue disorders. However, little has been known about how UV-induced DNA damage mediates the release of inflammatory mediators from keratinocytes. Here, we show that UVB radiation intensity-dependently increases NLRP3 gene expression and IL-1ß production in human keratinocytes. Knockdown of NLRP3 with siRNA suppresses UVB-induced production of not only IL-1ß, but also other inflammatory mediators, including IL-1α, IL-6, TNF-α, and PGE2. In addition, inhibition of DNA damage repair by knockdown of XPA, which is a major component of the nucleotide excision repair system, causes accumulation of cyclobutane pyrimidine dimer (CPD) and activation of NLRP3 inflammasome. In vivo immunofluorescence analysis confirmed that NLRP3 expression is also elevated in UV-irradiated human epidermis. Overall, our findings indicate that UVB-induced DNA damage initiates NLRP3 inflammasome activation, leading to release of various inflammatory mediators from human keratinocytes.


Asunto(s)
Núcleo Celular/genética , Daño del ADN , Inflamasomas/metabolismo , Inflamación/etiología , Queratinocitos/efectos de la radiación , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Rayos Ultravioleta , Células Cultivadas , Humanos , Queratinocitos/patología
13.
Inorg Chem ; 55(5): 1978-85, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26866384

RESUMEN

Luminescent dinuclear Cu(I) complexes, [Cu2X2(dpypp)2] [Cu-X; X = Cl, Br, I; dpypp = 2,2'-(phenylphosphinediyl)dipyridine], were successfully synthesized by a solvent-assisted mechanochemical method. A trace amount of the assisting solvent plays a key role in the mechanochemical synthesis; only two solvents possessing the nitrile group, CH3CN and PhCN, were effective for promoting the formation of dinuclear Cu-X. X-ray analysis revealed that the dinuclear structure with no Cu···Cu interactions, bridged by two dpypp ligands, was commonly formed in all Cu-X species. These complexes exhibited bright green emission in the solid state at room temperature (Φ = 0.23, 0.50, and 0.74; λem = 528, 518, and 530 nm for Cu-Cl, Cu-Br, and Cu-I, respectively). Emission decay measurement and TD-DFT calculation suggested that the luminescence of Cu-X could be assigned to phosphorescence from the triplet metal-to-ligand charge-transfer ((3)MLCT) excited state, effectively mixed with the halide-to-ligand charge-transfer ((3)XLCT) excited state, at 77 K. The source of emission changed to thermally activated delayed fluorescence (TADF) with the same electronic transition nature at room temperature. In addition, the CH3CN-bound analogue, [Cu2(CH3CN)2(dpypp)2](BF4)2, was successfully mechanochemically converted to Cu-X by grinding with solid KX in the presence of a trace amount of assisting water.

14.
J Phys Ther Sci ; 27(12): 3711-6, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26834337

RESUMEN

[Purpose] Forest walking may be effective for human health, but little information is available about effects of energy expenditure on blood pressure responses after forest walking. The aim of this study was to investigate the relationship between the activity energy expenditure and changes in blood pressure in individuals after forest walking. [Subjects] The subjects were 54 middle-aged and elderly people. [Methods] All subjects walked in the forest for approximately 90 min. Blood pressure, salivary amylase, and the Profile of Mood States were evaluated before and after forest walking, and activity energy expenditure was monitored throughout forest walking. Subjects were divided into two groups according to mean arterial pressure changes: a responder group (>5% decreases) and a nonresponder group (<5%). [Results] Forest walking significantly reduced the mean arterial pressure and improved the Profile of Mood States in both groups. Activity energy expenditure was related to changes in mean arterial pressure in the responder group, while this relation was not observed in the nonresponder group. Differential activity energy expenditure did not strongly affect improvement of the Profile of Mood States. [Conclusion] Greater walking-related greater activity energy expenditure might be required to accentuate physiological beneficial effects on in middle-aged and aged people. Furthermore, the forest environment per se can attenuate psychological stress.

15.
Front Behav Neurosci ; 18: 1330596, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38380151

RESUMEN

The present study aimed to investigate the effects of a short period of normobaric hypoxic exposure on spatial learning and memory, and brain-derived neurotrophic factor (BDNF) levels in the rat hippocampus. Hypoxic conditions were set at 12.5% O2. We compared all variables between normoxic trials (Norm), after 24 h (Hypo-24 h), and after 72 h of hypoxic exposure (Hypo-72 h). Spatial learning and memory were evaluated by using a water-finding task in an open field. Time to find water drinking fountains was significantly extended in Hypo 24 h (36.2 ± 21.9 s) compared to those in Norm (17.9 ± 12.8 s; P < 0.05), whereas no statistical differences between Norm and Hypo-72 h (22.7 ± 12.3 s). Moreover, hippocampal BDNF level in Hypo-24 h was significantly lower compared to Norm (189.4 ± 28.4 vs. 224.9 ± 47.7 ng/g wet tissue, P < 0.05), whereas no statistically differences in those between Norm and Hypo-72 h (228.1 ± 39.8 ng/g wet tissue). No significant differences in the changes in corticosterone and adrenocorticotropic hormone levels were observed across the three conditions. When data from Hypo-24 h and Hypo-72 h of hypoxia were pooled, there was a marginal negative relationship between the time to find drinking fountains and BDNF (P < 0.1), and was a significant negative relationship between the locomotor activities and BDNF (P < 0.05). These results suggest that acute hypoxic exposure (24 h) may impair spatial learning and memory; however, it recovered after 72 h of hypoxic exposure. These changes in spatial learning and memory may be associated with changes in the hippocampal BDNF levels in rats.

16.
Toxicol Pathol ; 41(6): 842-56, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23222995

RESUMEN

Because precise information as to the toxicity of vanadium is required for practical use of vanadium compounds as antidiabetic drugs, we examined vanadium toxicity in mice fed normal diet or high-fat diet (C57BL/6N, male, 7 weeks) by oral administration of ammonium metavanadate (AMV) with a maximum dose of 20 mgV/kg/day. Marked lipid accumulation in hepatocytes, renal epithelial cells, and mucosal epithelial cells of the small and large intestines and severe degeneration, necrosis, and loss of mucosal epithelial cells in the small intestine were observed. These pathological changes were more severe in mice fed high-fat diet than mice fed normal diet, and the intensity of the changes increased with increase in the administered dose of AMV. By electron microscopy, the number and size of lipid droplets in hepatocytes were increased. In the small intestine, a TUNEL assay showed a decreased number of positive cells, and positive cells for acrolein immunohistochemistry were observed specifically in the mucosal epithelial cells indicating degeneration and necrosis in the AMV-treated group, suggesting that a possible factor responsible for cell necrosis in the small intestine could be oxidative stress. In conclusion, AMV may impair cellular lipid metabolism, resulting in lipid accumulation, and induce mucosal epithelial cell necrosis in the small intestine.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Vanadatos/toxicidad , Vanadio/toxicidad , Animales , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa , Enzimas/sangre , Células Epiteliales/metabolismo , Células Epiteliales/patología , Hepatocitos/química , Hepatocitos/patología , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Mucosa Intestinal/química , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Necrosis/inducido químicamente , Bazo/patología , Análisis de Supervivencia
17.
Biosci Biotechnol Biochem ; 77(4): 867-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23563543

RESUMEN

Dietary glucosylceramide increased the expression of claudin-1 in UVB-irradiated mouse epidermis. Sphingosine and phytosphingosine, metabolites of glucosylceramide, increased trans-epithelial electrical resistance, and phytosphingosine increased claudin-1 mRNA expression in cultured keratinocytes. Our results indicate that the skin barrier improvement induced by dietary glucosylceramide might be due to enhancement of tight junction function, mediated by increased expression of claudin-1 induced by sphingoid metabolites.


Asunto(s)
Claudina-1/genética , Epidermis/efectos de los fármacos , Glucosilceramidas/farmacología , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Activación Transcripcional/efectos de los fármacos , Animales , Línea Celular , Carbohidratos de la Dieta/farmacología , Células Epidérmicas , Epidermis/metabolismo , Epidermis/efectos de la radiación , Humanos , Masculino , Ratones , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/efectos de la radiación , Uniones Estrechas/efectos de la radiación , Activación Transcripcional/efectos de la radiación , Rayos Ultravioleta/efectos adversos
18.
Cureus ; 15(9): e45337, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37849572

RESUMEN

Children with trisomy 18 have abnormal airway anatomy, making their airway management challenging. Only a few papers have comprehensively described and discussed the use of supraglottic airway devices in patients with trisomy 18. We present a case of a 20-month-old boy with trisomy 18 who was scheduled for open repair of the right inguinal hernia. He had micrognathia, a short neck, and an atrial septal defect but was in a clinically stable condition. A supraglottic airway device was inserted under general anesthesia. The patient's respiration was maintained by pressure support ventilation with spontaneous breathing. A right ilioinguinal-iliohypogastric nerve block was performed for perioperative analgesia. The surgery ended without complications. After removing the supraglottic airway device and ensuring proper respiratory parameters, the patient was transferred to the post-anesthesia care unit. In our case, supraglottic airway devices could be effectively used as a primary airway for inguinal hernia repair. The concomitant ilioinguinal-iliohypogastric nerve block was helpful for anesthetic management with spontaneous breathing maintained using pressure support ventilation. A supraglottic airway device may be a potential alternative as a primary airway for superficial surgery in pediatric patients with trisomy 18. For pediatric patients with difficult airways, a second-generation supraglottic airway device with the insertion of a gastric tube to prevent gastric insufflation combining pressure support ventilation and positive end-expiratory pressure may be a beneficial choice for the maintenance of spontaneous breathing.

19.
Biol Pharm Bull ; 35(6): 909-16, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22687483

RESUMEN

Peanut skin (Arachis hypogaea L., Fabaceae) is an abundant source for polyphenols, such as proanthocyanidin oligomers. To determine whether proanthocyanidin has beneficial effects on skin, we tested for inhibitory activity of proanthocyanidins isolated from peanut skin on inflammatory cytokine production and melanin synthesis in cultured cell lines. Administration of peanut skin extract (PSE, 200 µg/mL) decreased melanogenesis in cultured human melanoma HMV-II co-stimulated with phorbol-12-myristate-13-acetate. It also decreased production of inflammatory cytokines (PSE at 100 µg/mL), tumor necrosis factor-α and interleukin-6, in cultured human monocytic THP-1 cells in response to lipopolysaccharide. We isolated ten known proanthocyanidins and one new proanthocyanidin trimer from the PSE. The structure of the new compound (5) was determined by 1D- and 2D-NMR and mass spectrometry analyses, and was determined as epicatechin-(2ß→O→7,4ß→6)-epicatechin-(4ß→6)-epicatechin. The other known proanthocyanidins were identified as proanthocyanidin monomers (1), dimers (6-9), trimers (3-5) and tetramers (2, 10, 11). They showed suppressive activities against melanogenesis and cytokine production at concentrations ranging from 0.1-10 µg/mL. Among the tested compounds, suppressive activities of proanthocyanidin dimers or trimers in two assay systems were stronger than those obtained with monomer or tetramers. These data indicate that proanthocyanidin oligomers from peanut skin have the potential to reduce dermatological conditions such as inflammation and melanogenesis.


Asunto(s)
Antiinflamatorios/farmacología , Arachis , Extractos Vegetales/farmacología , Proantocianidinas/farmacología , Antiinflamatorios/química , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Indoles/metabolismo , Interleucina-6/metabolismo , Melaninas/metabolismo , Conformación Molecular , Extractos Vegetales/química , Proantocianidinas/química , Factor de Necrosis Tumoral alfa/metabolismo
20.
Front Immunol ; 13: 876515, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432341

RESUMEN

Skin acts as the primary interface between the body and the environment. The skin immune system is composed of a complex network of immune cells and factors that provide the first line of defense against microbial pathogens and environmental insults. Alarmin cytokines mediate an intricate intercellular communication between keratinocytes and immune cells to regulate cutaneous immune responses. Proper functions of the type 2 alarmin cytokines, thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33, are paramount to the maintenance of skin homeostasis, and their dysregulation is commonly associated with allergic inflammation. In this review, we discuss recent findings on the complex regulatory network of type 2 alarmin cytokines that control skin immunity and highlight the mechanisms by which these cytokines regulate skin immune responses in host defense, chronic inflammation, and cancer.


Asunto(s)
Alarminas , Citocinas , Humanos , Inflamación , Queratinocitos , Piel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA