RESUMEN
The glycoprotein CD47 regulates antiphagocytic activity via signal regulatory protein alpha (SIRPa). This study investigated CD47 expression on Hodgkin and Reed-Sternberg (HRS) cells in the classical Hodgkin lymphoma (cHL) tumour microenvironment and its correlation with prognosis, programmed-death (PD) immune markers, and SIRPa+ leukocytes. We conducted immunohistochemistry with CD47 and SIRPa antibodies on diagnostic biopsies (tissue microarrays) from cHL patients from two cohorts (n = 178). In cohort I (n = 136) patients with high expression of CD47 on HRS cells (n = 48) had a significantly inferior event-free survival [hazard ratio (HR) = 5.57; 95% confidence interval (CI), 2.78-11.20; p < 0.001] and overall survival (OS) (HR = 8.54; 95% CI, 3.19-22.90; p < 0.001) compared with patients with low expression (n = 88). The survival results remained statistically significant in multivariable Cox regression adjusted for known prognostic factors. In cohort II (n = 42) high HRS cell CD47 expression also carried shorter event-free survival (EFS) (HR = 5.96; 95% CI, 1.20-29.59; p = 0.029) and OS (HR = 5.61; 95% CI, 0.58-54.15; p = 0.136), although it did not retain statistical significance in the multivariable analysis. Further, high CD47 expression did not correlate with SIRPa+ leukocytes or PD-1, PD-L1 and PD-L2 expression. This study provides a deeper understanding of the role of CD47 in cHL during an era of emerging CD47 therapies.
Asunto(s)
Enfermedad de Hodgkin , Antígeno B7-H1/metabolismo , Antígeno CD47 , Humanos , Pronóstico , Células de Reed-Sternberg/metabolismo , Microambiente TumoralRESUMEN
BACKGROUND: Small intestinal neuroendocrine tumors (SI-NETs) are typically slow-growing tumors that have metastasized already at the time of diagnosis. The purpose of the present study was to further refine and define regions of recurrent copy number (CN) alterations (CNA) in SI-NETs. METHODS: Genome-wide CNAs was determined by applying array CGH (a-CGH) on SI-NETs including 18 primary tumors and 12 metastases. Quantitative PCR analysis (qPCR) was used to confirm CNAs detected by a-CGH as well as to detect CNAs in an extended panel of SI-NETs. Unsupervised hierarchical clustering was used to detect tumor groups with similar patterns of chromosomal alterations based on recurrent regions of CN loss or gain. The log rank test was used to calculate overall survival. Mann-Whitney U test or Fisher's exact test were used to evaluate associations between tumor groups and recurrent CNAs or clinical parameters. RESULTS: The most frequent abnormality was loss of chromosome 18 observed in 70% of the cases. CN losses were also frequently found of chromosomes 11 (23%), 16 (20%), and 9 (20%), with regions of recurrent CN loss identified in 11q23.1-qter, 16q12.2-qter, 9pter-p13.2 and 9p13.1-11.2. Gains were most frequently detected in chromosomes 14 (43%), 20 (37%), 4 (27%), and 5 (23%) with recurrent regions of CN gain located to 14q11.2, 14q32.2-32.31, 20pter-p11.21, 20q11.1-11.21, 20q12-qter, 4 and 5. qPCR analysis confirmed most CNAs detected by a-CGH as well as revealed CNAs in an extended panel of SI-NETs. Unsupervised hierarchical clustering of recurrent regions of CNAs revealed two separate tumor groups and 5 chromosomal clusters. Loss of chromosomes 18, 16 and 11 and gain of chromosome 20 were found in both tumor groups. Tumor group II was enriched for alterations in chromosome cluster-d, including gain of chromosomes 4, 5, 7, 14 and gain of 20 in chromosome cluster-b. Gain in 20pter-p11.21 was associated with short survival. Statistically significant differences were observed between primary tumors and metastases for loss of 16q and gain of 7. CONCLUSION: Our results revealed recurrent CNAs in several candidate regions with a potential role in SI-NET development. Distinct genetic alterations and pathways are involved in tumorigenesis of SI-NETs.
Asunto(s)
Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Neoplasias Intestinales/genética , Tumores Neuroendocrinos/genética , Adulto , Anciano , Anciano de 80 o más Años , Aberraciones Cromosómicas , Mapeo Cromosómico , Análisis por Conglomerados , Femenino , Humanos , Neoplasias Intestinales/mortalidad , Neoplasias Intestinales/patología , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Tumores Neuroendocrinos/mortalidad , Tumores Neuroendocrinos/patología , Reproducibilidad de los ResultadosRESUMEN
PURPOSE: Although CD19 chimeric antigen receptor T cells (CAR-T) therapy has shown remarkable success in B-cell malignancies, a substantial fraction of patients do not obtain a long-term clinical response. This could be influenced by the quality of the individual CAR-T infusion product. To shed some light on this, clinical outcome was correlated to characteristics of CAR-T infusion products. PATIENTS AND METHODS: In this phase II study, patients with B-cell lymphoma (n = 23) or leukemia (n = 1) received one or two infusions of third-generation CD19-directed CAR-Ts (2 × 108/m2). The clinical trial was registered at clinicaltrials.gov: NCT03068416. We investigated the transcriptional profile of individual CD19 CAR-T infusion products using targeted single-cell RNA sequencing and multicolor flow cytometry. RESULTS: Two CAR-T infusions were not better than one in the settings used in this study. As for the CAR-T infusion products, we found that effector-like CD8+CAR-Ts with a high polyfunctionality, high cytotoxic and cytokine production profile, and low dysfunctional signature were associated with clinical response. An extended ex vivo expansion time during CAR-T manufacturing negatively influenced the proportion of effector CD8+CAR-Ts in the infusion product. CONCLUSIONS: We identified cell-intrinsic characteristics of effector CD8+CAR-Ts correlating with response that could be used as an indicator for clinical outcome. The results in the study also serve as a guide to CAR-T manufacturing practices.
RESUMEN
Exposure of MOLT4 human T-cell leukemia cells to 6-Mercaptopurine (6-MP) and 6-Thioguanine (6-TG) resulted in acquired resistance associated with attenuated expression of the genes encoding concentrative nucleoside transporter 3 (CNT3) and equilibrative nucleoside transporter 2 (ENT2). To identify other alterations at the RNA and DNA levels associated with 6-MP- and 6-TG resistance, we compared here the patterns of gene expression and DNA copy number profiles of resistant sublines to those of the parental wild-type cells. The mRNA levels for two nucleoside transporters were down-regulated in both of the thiopurine-resistant sublines. Moreover, both of these cell lines expressed genes encoding the enzymes of purine nucleotide composition and synthesis, including adenylate kinase 3-like 1 and guanosine monophosphate synthetase at significantly lower levels than wild-type cells. In addition, expression of the mRNA for a specialized DNA polymerase, human terminal transferase encoded by the terminal deoxynucleotidyl transferase (DNTT) gene, was 122- and 93-fold higher in 6-TG- and 6-MP-resistant cells, respectively. The varying responses to 6-MP- and 6-TG observed here may help identify novel cellular targets and modalities of resistance to thiopurines, as well as indicating new potential approaches to individualization therapy with these drugs.
Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Resistencia a Antineoplásicos/genética , Regulación Leucémica de la Expresión Génica , Mercaptopurina/farmacología , Tioguanina/farmacología , Línea Celular Tumoral , ADN Nucleotidilexotransferasa/genética , Dosificación de Gen , Perfilación de la Expresión Génica , Humanos , Leucemia-Linfoma Linfoblástico de Células T PrecursorasRESUMEN
Interleukin-6 (IL-6) can induce therapeutic resistance for several cancer agents currently used to treat classical Hodgkin lymphoma (cHL). We aimed to investigate whether the presence of IL-6+ leukocytes and IL-6+ Hodgkin-Reed-Sternberg (HRS) cells in the tumor microenvironment (TME) was associated with adverse survival outcomes, expression of other immune markers, and serum IL-6 levels. We used a contemporarily treated cohort (n = 136), with a median follow-up of 13.8 years (range, 0.59-15.9 years). We performed immunohistochemistry with an IL-6 antibody on tissue microarrays from diagnostic biopsies of cHL patients. Patients with IL-6+ leukocytes ≥1% (n = 54 of 136) had inferior event-free survival (hazard ratio [HR] = 3.58; 95% confidence interval [CI], 1.80-7.15) and overall survival (HR = 6.71; 95% CI, 2.51-17.99). The adverse survival was maintained in multivariate Cox regression and propensity score-matched analyses, adjusting for well-known poor-prognostic covariates. The presence of IL-6+ HRS cells and high serum IL-6 levels were not associated with survival. IL-6+ leukocytes correlated with increased proportions of IL-6+ HRS cells (P < .01), CD138+ plasma cells (P < .01), CD68+ macrophages (P = .02), and tryptase-positive mast cells (P < .01). IL-6+ HRS cells correlated with increased proportions of CD68+ macrophages (P = .03), programmed death-ligand 1-positive (PD-L1+) leukocytes (P = .04), and PD-L1+ HRS cells (P < .01). Serum-IL-6 lacked correlation with IL-6 expression in the TME. This is the first study highlighting the adverse prognostic impact of IL-6+ leukocytes in the TME in a cohort of contemporarily treated adult patients with cHL.
Asunto(s)
Enfermedad de Hodgkin , Adulto , Enfermedad de Hodgkin/tratamiento farmacológico , Humanos , Interleucina-6 , Pronóstico , Células de Reed-Sternberg , Microambiente TumoralRESUMEN
In classical Hodgkin Lymphoma (cHL), immunoediting via protein signaling is key to evading tumor surveillance. We aimed to identify immune-related proteins that distinguish diagnostic cHL tissues (=diagnostic tumor lysates, n = 27) from control tissues (reactive lymph node lysates, n = 30). Further, we correlated our findings with the proteome plasma profile between cHL patients (n = 26) and healthy controls (n = 27). We used the proximity extension assay (PEA) with the OlinkTM multiplex Immuno-Oncology panel, consisting of 92 proteins. Univariate, multivariate-adjusted analysis and Benjamini-Hochberg's false discovery testing (=Padj) were performed to detect significant discrepancies. Proteins distinguishing cHL cases from controls were more numerous in plasma (30 proteins) than tissue (17 proteins), all Padj < 0.05. Eight of the identified proteins in cHL tissue (PD-L1, IL-6, CCL17, CCL3, IL-13, MMP12, TNFRS4, and LAG3) were elevated in both cHL tissues and cHL plasma compared with control samples. Six proteins distinguishing cHL tissues from controls tissues were significantly correlated to PD-L1 expression in cHL tissue (IL-6, MCP-2, CCL3, CCL4, GZMB, and IFN-gamma, all p ≤0.05). In conclusion, this study introduces a distinguishing proteomic profile in cHL tissue and potential immune-related markers of pathophysiological relevance.
RESUMEN
BACKGROUND: Cardiovascular toxicity is a notorious complication of doxorubicin (DXR) therapy for diffuse large B-cell lymphoma (DLBCL). Although surveillance of well-known biological markers for cardiovascular disease (CVD) as NTproBNP and Troponins may be helpful, there are no established markers to monitor for evolving CVD during treatment. New possibilities have arisen with the emergence of newer techniques allowing for analysis of plasma proteins that can be associated with cardiovascular disease. Proximity Extension Assay is one of them. OBJECTIVES: We aimed to illustrate the incidence of CVD in DLBCL patients treated with DXR and to establish whether there are plasma proteins associated with pre-existing or emerging CVD. METHODS: In 95 patients, 182 different proteins from OLINK panels, NTproBNP, Troponin I and CRP were assessed prior to, during and after treatment. For comparison, samples from controls were analyzed. RESULTS: In the DLBCL cohort, 33.3% had pre-treatment CVD compared to 5.0% in the controls and 23.2% developed new CVD. Of the 32.6% who died during follow up, CVD was the cause in 4 patients. Spondin-1 (SPON-1) correlated to pre-treatment CVD (1.22 fold change, 95% CI 1.10-1.35, p = 0.00025, q = 0.045). Interleukin-1 receptor type 1 (IL-1RT1) was associated to emerging CVD (1.24 fold change, 95% CI 1.10-1.39, p = 0.00044, q = 0.082). CONCLUSION: We observed a higher prevalence of CVD in DLBCL patients compared to controls prior to DXR therapy. Two proteins, SPON-1 and IL-1RT1, were related to pre-existing and emerging CVD in DXR treated patients. If confirmed in larger cohorts, IL-1RT1 may emerge as a reliable biomarker for unfolding CVD in DLBCL.
RESUMEN
In this study we present two novel anaplastic thyroid carcinoma (ATC) lines (HTh 104 and HTh 112) and further characterize six frequently used ATC lines (HTh 7, HTh 74, HTh 83, C 643, KAT-4, and SW 1736). Three of the lines carried a heterozygous BRAF mutation V600E, which is in line with reports of BRAF mutations in primary ATC and papillary thyroid cancer. Several nonrandom breakpoints were identified by spectral karyotyping (SKY) and G-banding in these lines including the novel 1p36 and 17q24-25 as well as 3p21-22 and 15q26 that are also implicated in well-differentiated thyroid cancers. Comparative genomic hybridization showed frequent gain of 20q, including the UBCH10 gene in 20q13.12, which was further confirmed by array-comparative genomic hybridization and fluorescence in situ hybridization analyses. Our results concur with previous studies in both primary tumors and cell lines, indicating that gain of chromosome 20 is important in the pathogenesis of ATC and/or progression of differentiated thyroid cancers to ATC.
Asunto(s)
Carcinoma/genética , Aberraciones Cromosómicas/clasificación , Cromosomas Humanos/genética , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias de la Tiroides/genética , Anciano , Anciano de 80 o más Años , Carcinoma/patología , Línea Celular Tumoral , Femenino , Amplificación de Genes , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Análisis por Micromatrices , Hibridación de Ácido Nucleico , Fosfohidrolasa PTEN/genética , Cariotipificación Espectral , Neoplasias de la Tiroides/patología , Enzimas Ubiquitina-Conjugadoras/genéticaRESUMEN
CONTEXT: Somatostatin analogs are established in the treatment of neuroendocrine tumors (NETs) including small intestinal NET; however, the molecular mechanisms are not well known. Here, we examined the direct effects of lanreotide in NET cell line models. SETTING AND DESIGN: The cell lines HC45 and H727 were treated with 10nM lanreotide for different time periods and alterations of the proteome were analyzed by in-depth high-resolution isoelectric focusing tandem liquid chromatography-mass spectrometry. We next investigated whether the observed suppression of survivin was mediated by adenomatous polyposis coli (APC) and possible effects on tumor proliferation in vitro. Expression of survivin was assessed by immunohistochemistry in 112 NET cases and compared with patient outcome. RESULTS: We quantified 6451 and 7801 proteins in HC45 and H727, respectively. After short time lanreotide treatment APC was increased and survivin reduced. Overexpression of APC in H727 cells decreased, and APC knock-down elevated the survivin level. The lanreotide regulation of APC-survivin could be suppressed by small interfering RNA against somatostatin receptor 2. Although lanreotide only gave slight inhibition of proliferation, targeting of survivin with the small molecule YM155 dramatically reduced proliferation. Moderate or high as compared with low or absent total survivin expression was associated with shorter progression-free survival, independent of tumor stage, grade, and localization. CONCLUSIONS: We report a proteome-wide analysis of changes in response to lanreotide in NET cell lines. This analysis suggests a connection between somatostatin analog, APC, and survivin levels. Survivin is a possible prognostic factor and a new potential therapeutic target in NETs.
Asunto(s)
Antineoplásicos/farmacología , Proteínas Inhibidoras de la Apoptosis/efectos de los fármacos , Tumores Neuroendocrinos/tratamiento farmacológico , Péptidos Cíclicos/farmacología , Proteómica/métodos , Somatostatina/análogos & derivados , Somatostatina/análisis , Línea Celular Tumoral , Humanos , Somatostatina/farmacología , SurvivinRESUMEN
OBJECTIVES: Somatic deletion of chromosome 11q13 is the most frequent genetic aberration in parathyroid adenoma. To gain further insight into the genetic etiology of parathyroid tumor development, we examined a comprehensive gene expression profile of parathyroid adenomas and normal parathyroid tissues. The results were then evaluated with respect to differences between adenomas and normal parathyroid tissue, and to the presence of loss of heterozygosity (LOH) in chromosomal region 11q13. DESIGN AND METHODS: Sporadic parathyroid adenomas and normal parathyroids were hybridized against HG-U95Av2 oligonucleotide arrays (Affymetrix) containing a total of 12,625 probe sets. Quantitative real-time PCR (QRT-PCR) was performed in a larger series of parathyroid adenomas, in order to con-firm the microarray results. RESULTS: Cyclin D1 and c-Jun showed increased expression in adenomas vs normal parathyroids by microarray analysis and QRT-PCR, suggesting an oncogenic role of these genes in parathyroid tumor development. At unsupervised hierarchical clustering, the adenomas fell into two groups: Group I adenomas were characterized by 11q13 LOH, while Group II adenomas lacked this abnormality. In addition, a t-test analysis identified largely non-overlapping genes with differential expression in the tumors subgroups; e.g. in Group I tumors the putative oncogene ENC 1 was found highly over-expressed vs Group II adenomas. CONCLUSIONS: The microarray analyses revealed partly distinctive and partly common expression profiles in parathyroid adenomas with and without 11q13 LOH. In addition, approximately half of the under-expressed genes were mapped to chromosome 11, in agreement with a dose effect following loss of this chromosome.
Asunto(s)
Adenoma/genética , Perfilación de la Expresión Génica , Análisis por Micromatrices , Neoplasias de las Paratiroides/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Cromosomas Humanos Par 11/genética , Ciclina D1/genética , Femenino , Expresión Génica , Genes jun , Humanos , Pérdida de Heterocigocidad , Masculino , Persona de Mediana Edad , Familia de Multigenes , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
The CDKN2A locus on human chromosome 9p21 encodes two proteins, p16 and p14ARF, that mainly regulate cell cycle progression and cell survival via the pRb and p53 pathways, respectively. Germline mutations in CDKN2A have been linked to development of cutaneous melanoma in some families with hereditary melanoma. Due to overlapping open reading frames in exon 2, some mutations in this exon affect both p16 and p14ARF. We previously reported a 24bp deletion in CDKN2A exon 2 in a patient with multiple primary melanomas and melanoma heredity. To further clarify the possible role of the 24bp deletion for melanoma development, especially with respect to p14ARF, we have studied the cellular distribution and function of the resulting p14ARF del (77-84) and p16 del (62-69) mutant proteins. We found that p14ARF del (77-84) had decreased nucleolar localization, and was less efficient than wt p14ARF in stabilizing p53, inducing G1 cell cycle arrest, and inhibiting colony formation. The p16 del (62-69) mutant localized predominantly to the cytoplasm, did not induce G1 cell cycle arrest, and failed to suppress colony formation. We conclude that p14ARF del (77-84) has retained the ability to stabilize MDM2 and p53, but that it is less potent than wt p14ARF. This partial functional defect may complement the clearly defective p16 del (62-69) mutant and thus contribute to melanoma development in patients carrying the 24bp deletion in CDKN2A.
Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/fisiología , Genes p16 , Mutación de Línea Germinal , Melanoma/genética , Proteínas Nucleares , Proteína p14ARF Supresora de Tumor/fisiología , Secuencia de Aminoácidos , Inhibidor p16 de la Quinasa Dependiente de Ciclina/análisis , Fase G1 , Humanos , Masculino , Melanoma/etiología , Persona de Mediana Edad , Datos de Secuencia Molecular , Proteínas Proto-Oncogénicas/análisis , Proteínas Proto-Oncogénicas c-mdm2 , Proteína p14ARF Supresora de Tumor/análisis , Proteína p53 Supresora de Tumor/análisisRESUMEN
Aberrant DNA methylation is a feature of human cancer affecting gene expression and tumor phenotype. Here, we quantified promoter methylation of candidate genes and global methylation in 44 small intestinal-neuroendocrine tumors (SI-NETs) from 33 patients by pyrosequencing. Findings were compared with gene expression, patient outcome and known tumor copy number alterations. Promoter methylation was observed for WIF1, RASSF1A, CTNNB1, CXCL14, NKX2-3, P16, LAMA1, and CDH1. By contrast APC, CDH3, HIC1, P14, SMAD2, and SMAD4 only had low levels of methylation. WIF1 methylation was significantly increased (P = 0.001) and WIF1 expression was reduced in SI-NETs vs. normal references (P = 0.003). WIF1, NKX2-3, and CXCL14 expression was reduced in metastases vs. primary tumors (P<0.02). Low expression of RASSF1A and P16 were associated with poor overall survival (P = 0.045 and P = 0.011, respectively). Global methylation determined by pyrosequencing of LINE1 repeats was reduced in tumors vs. normal references, and was associated with loss in chromosome 18. The tumors fell into three clusters with enrichment of WIF1 methylation and LINE1 hypomethylation in Cluster I and RASSF1A and CTNNB1 methylation and loss in 16q in Cluster II. In Cluster III, these alterations were low-abundant and NKX2-3 methylation was low. Similar analyses in the SI-NET cell lines HC45 and CNDT2 showed methylation for CDH1 and WIF1 and/or P16, CXCL14, NKX2-3, LAMA1, and CTNNB1. Treatment with the demethylating agent 5-azacytidine reduced DNA methylation and increased expression of these genes in vitro. In conclusion, promoter methylation of tumor suppressor genes is associated with suppressed gene expression and DNA copy number alterations in SI-NETs, and may be restored in vitro.
Asunto(s)
Metilación de ADN , Neoplasias Intestinales/metabolismo , Intestino Delgado/metabolismo , Tumores Neuroendocrinos/metabolismo , Antimetabolitos Antineoplásicos/farmacología , Azacitidina/farmacología , Línea Celular Tumoral , Cromosomas Humanos Par 18 , Análisis por Conglomerados , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Variaciones en el Número de Copia de ADN , Femenino , Genoma Humano , Humanos , Neoplasias Intestinales/mortalidad , Neoplasias Intestinales/patología , Intestino Delgado/efectos de los fármacos , Elementos de Nucleótido Esparcido Largo , Masculino , Metástasis de la Neoplasia , Tumores Neuroendocrinos/mortalidad , Tumores Neuroendocrinos/patología , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Tasa de Supervivencia , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismoRESUMEN
Epigenetic mechanisms involved in primary hyperparathyroidism are poorly understood as studies are limited. In order to understand the role of aberrant DNA promoter methylation in the pathogenesis of parathyroid tumors, we have quantified the CpG island promoter methylation density of several candidate genes including APC (promoter 1A and 1B), ß-catenin (CTNNB1), CASR, CDC73/HRPT2, MEN1, P16 (CDKN2A), PAX1, RASSF1A, SFRP1 and VDR in 72 parathyroid tumors and 3 normal parathyroid references using bisulfite pyrosequencing. Global methylation levels were assessed for LINE-1. We also compared methylation levels with gene expression levels measured by qRT-PCR for genes showing frequent hypermethylation. The adenomas displayed frequent hypermethylation of APC 1A (37/66; 56%), RASSF1A (34/66; 52%) and ß-catenin (19/66; 29%). One of the three atypical adenomas was hypermethylated for APC 1A. The three carcinomas were hypermethylated for RASSF1A and SFRP1, and the latter was only observed in this subtype. The global methylation density was similar in tumors (mean 70%) and parathyroid reference samples (mean 70%). In general, hypermethylated genes had reduced expression in the parathyroid adenomas using qRT-PCR. Among the adenomas, methylation of APC 1A correlated with adenoma weight (r = 0.306, p < 0.05). Furthermore, the methylation status of RASSF1A correlated with each of APC 1A (r = 0.289, p < 0.05) and ß-catenin (r = 0.315, p < 0.01). Our findings suggest a role for aberrant DNA promoter methylation of APC 1A, ß-catenin and RASSF1A in a subset of parathyroid tumors.
Asunto(s)
Metilación de ADN , Hiperparatiroidismo Primario/genética , Neoplasias de las Paratiroides/genética , Regiones Promotoras Genéticas , Adenoma/genética , Adenoma/metabolismo , Adenoma/patología , Adulto , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Glándulas Paratiroides/metabolismo , Glándulas Paratiroides/patología , Neoplasias de las Paratiroides/metabolismoRESUMEN
Mutations in the hyperparathyroidism type 2 (HRPT2/CDC73) gene and alterations in the parafibromin protein have been established in the majority of parathyroid carcinomas and in subsets of parathyroid adenomas. While it is known that CDC73-mutated parathyroid tumors display specific gene expression changes compared to CDC73 wild-type cases, the molecular cytogenetic profile in CDC73-mutated cases compared to unselected adenomas (with an expected very low frequency of CDC73 mutations) remains unknown. For this purpose, nine parathyroid tumors with established CDC73 gene inactivating mutations (three carcinomas, one atypical adenoma and five adenomas) were analyzed for copy number alterations and loss of heterozygosity using array-comparative genomic hybridization (a-CGH) and single nucleotide polymorphism (SNP) microarrays, respectively. Furthermore, CDC73 gene promoter methylation levels were assessed using bisulfite Pyrosequencing. The panel included seven tumors with single mutation and three with double mutations of the CDC73 gene. The carcinomas displayed copy number alterations in agreement with previous studies, whereas the CDC73-mutated adenomas did not display the same pattern of alterations at loci frequently deleted in unselected parathyroid tumors. Furthermore, gross losses of chromosomal material at 1p and 13 were significantly (pâ=â0.012) associated with parathyroid carcinomas as opposed to adenomas. Quantitative PCR-based copy number loss regarding CDC73 was observed in three adenomas, while all the carcinomas were diploid or showed copy number gain for CDC73 gene. Hypermethylation of the CDC73 gene promoter was not observed. Our data could suggest that CDC73-mutated parathyroid adenomas exhibit a partly unique cytogenetic profile in addition to that of carcinomas and unselected adenomas. Furthermore, CDC73-mutated carcinomas displayed losses at 1p and 13 which are not seen in CDC73-mutated adenomas, making these regions of interest for further studies regarding malignant properties in tumors from CDC73-mutated cases. However, due to the small sample size, validation of the results in a larger cohort is warranted.
Asunto(s)
Adenoma/genética , Carcinoma/genética , Sitios Genéticos , Neoplasias de las Paratiroides/genética , Proteínas Supresoras de Tumor/genética , Adenoma/diagnóstico , Secuencia de Bases , Carcinoma/diagnóstico , Hibridación Genómica Comparativa , Análisis Citogenético , Variaciones en el Número de Copia de ADN , Metilación de ADN , Femenino , Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Pérdida de Heterocigocidad , Masculino , Datos de Secuencia Molecular , Tasa de Mutación , Especificidad de Órganos , Neoplasias de las Paratiroides/diagnóstico , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Análisis de Secuencia de ADNRESUMEN
In this study, we genetically characterized parathyroid adenomas with large glandular weights, for which independent observations suggest pronounced clinical manifestations. Large parathyroid adenomas (LPTAs) were defined as the 5% largest sporadic parathyroid adenomas identified among the 590 cases operated in our institution during 2005-2009. The LPTA group showed a higher relative number of male cases and significantly higher levels of total plasma and ionized serum calcium (P<0.001). Further analysis of 21 LPTAs revealed low MIB1 proliferation index (0.1-1.5%), MEN1 mutations in five cases, and one HRPT2 (CDC73) mutation. Total or partial loss of parafibromin expression was observed in ten tumors, two of which also showed loss of APC expression. Using array CGH, we demonstrated recurrent copy number alterations most frequently involving loss in 1p (29%), gain in 5 (38%), and loss in 11q (33%). Totally, 21 minimal overlapping regions were defined for losses in 1p, 7q, 9p, 11, and 15q and gains in 3q, 5, 7p, 8p, 16q, 17p, and 19q. In addition, 12 tumors showed gross alterations of entire or almost entire chromosomes most frequently gain of 5 and loss of chromosome 11. While gain of 5 was the most frequent alteration observed in LPTAs, it was only detected in a small proportion (4/58 cases, 7%) of parathyroid adenomas. A significant positive correlation was observed between parathyroid hormone level and total copy number gain (r=0.48, P=0.031). These results support that LPTAs represent a group of patients with pronounced parathyroid hyperfunction and associated with specific genomic features.
Asunto(s)
Adenoma/genética , Neoplasias de las Paratiroides/genética , Adenoma/sangre , Adulto , Anciano , Anciano de 80 o más Años , Proteínas Adaptadoras de Señalización CARD/genética , Calcio/sangre , Hibridación Genómica Comparativa , Femenino , Dosificación de Gen , Humanos , Masculino , Persona de Mediana Edad , Mutación , Hormona Paratiroidea/sangre , Neoplasias de las Paratiroides/sangre , Proteínas Proto-Oncogénicas/genética , Proteínas Supresoras de Tumor/genéticaRESUMEN
BACKGROUND: Picropodophyllin (PPP) is a promising novel anti-neoplastic agent that efficiently kills tumor cells in vitro and causes tumor regression and increased survival in vivo. We have previously reported that PPP treatment induced moderate tolerance in two out of 10 cell lines only, and here report the acquired genomic and expression alterations associated with PPP selection over 1.5 years of treatment. METHODOLOGY/PRINCIPAL FINDINGS: Copy number alterations monitored using metaphase and array-based comparative genomic hybridization analyses revealed largely overlapping alterations in parental and maximally tolerant cells. Gain/amplification of the MYC and PVT1 loci in 8q24.21 were verified on the chromosome level. Abnormalities observed in connection to PPP treatment included regular gains and losses, as well as homozygous losses in 10q24.1-q24.2 and 12p12.3-p13.2 in one of the lines and amplification at 5q11.2 in the other. Abnormalities observed in both tolerant derivatives include amplification/gain of 5q11.2, gain of 11q12.1-q14.3 and gain of 13q33.3-qter. Using Nexus software analysis we combined the array-CGH data with data from gene expression profilings and identified genes that were altered in both inputs. A subset of genes identified as downregulated (ALDH1A3, ANXA1, TLR4 and RAB5A) or upregulated (COX6A1, NFIX, ME1, MAPK and TAP2) were validated by siRNA in the tolerant or parental cells to alter sensitivity to PPP and confirmed to alter sensitivity to PPP in further cell lines. CONCLUSIONS: Long-term PPP selection lead to altered gene expression in PPP tolerant cells with increase as well as decrease of genes involved in cell death such as PTEN and BCL2. In addition, acquired genomic copy number alterations were observed that were often reflected by altered mRNA expression levels for genes in the same regions.
Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Neoplasias/genética , Podofilotoxina/análogos & derivados , Desequilibrio Alélico/efectos de los fármacos , Desequilibrio Alélico/genética , Línea Celular Tumoral , Aberraciones Cromosómicas/efectos de los fármacos , Análisis por Conglomerados , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN/genética , Metilación de ADN/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genotipo , Humanos , Hibridación Fluorescente in Situ , Metafase/efectos de los fármacos , Podofilotoxina/farmacología , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Interferente Pequeño/metabolismo , Reproducibilidad de los Resultados , Cariotipificación EspectralRESUMEN
In vitro treatment of human T-cell leukemia cells with 7-hydroxymethotrexate, the major metabolite of methotrexate resulted in acquired resistance as a result of the complete loss of folypolyglutamate synthetase (FPGS) activity. This was in contradistinction to the major modality of antifolate resistance of impaired drug transport in leukemia cells exposed to methotrexate. To identify the genes associated with methotrexate and 7-hydroxymethotrexate resistance, we herein explored the patterns of genome-wide expression profiles in these antifolte-resistant leukemia sublines. mRNA levels of the reduced folate carrier, the primary influx transporter of folates and antifolates, were down-regulated more than two-fold in methotrexate-resistant cells. The dramatic loss of FPGS activity in 7-hydroxymethotrexate-resistant cells was associated with alterations in the expression of various genes aimed at preserving reduced folates and/or enhancing purine nucleotide biosynthesis, e.g. methylene tetrahydrofolate reductase, glycinamide ribonucleotide formyltransferase, adenosine deaminase, cystathionine beta synthase, as well as the ATP-dependent folate exporters BCRP/ABCG2 and MRP1/ABCC1. The observed changes in gene expression were generally not paralleled by acquired DNA copy numbers alterations, suggesting transcriptional regulatory mechanisms. Interestingly, gene expression of DNA/RNA metabolism and transport genes were more profoundly altered in methotrexate-resistant subline, whereas in 7-hydroxymethotrexate-resistant cells, the most profoundly affected groups of genes were those encoding for proteins involved in metabolism and cellular proliferation. Thus, the present investigation provides evidence that 7-hydroxymethotrexate induces gene expression alterations and an antifolate resistance modality that are distinct from its parent drug methotrexate.
Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Ácido Fólico/metabolismo , Perfilación de la Expresión Génica , Metotrexato/análogos & derivados , Nucleótidos/biosíntesis , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Linfocitos T/efectos de los fármacos , Antimetabolitos Antineoplásicos/sangre , Antimetabolitos Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Niño , Resistencia a Antineoplásicos/genética , Humanos , Metotrexato/sangre , Metotrexato/farmacología , Metotrexato/uso terapéutico , Análisis de Secuencia por Matrices de Oligonucleótidos , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangre , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/metabolismoRESUMEN
BACKGROUND: Germline alterations in cyclin-dependent kinase inhibitor 2A (CDKN2A) are important genetic factors in familial predisposition to melanoma. Activating mutations of the NRAS proto-oncogene are among the most common somatic genetic alterations in cutaneous malignant melanomas. We investigated the occurrence of NRAS mutations in melanomas and dysplastic nevi in individuals with germline CDKN2A mutations. METHODS: Genomic DNA was extracted from 39 biopsy samples (including primary melanomas, metastatic melanomas, and dysplastic nevi) from 25 patients in six Swedish families with a hereditary predisposition to melanoma who carried germline CDKN2A mutations. DNA was also extracted from 10 biopsy samples from patients with sporadic melanomas. NRAS was analyzed using polymerase chain reaction, single-strand conformation polymorphism analysis, and nucleotide sequence analysis. Differences in NRAS mutation frequency between hereditary and sporadic melanomas were analyzed by the chi-square test. All statistical tests were two-sided. RESULTS: Activating mutations in NRAS codon 61, all of which were either CAA(Gln)-AAA(Lys) or CAA(Gln)-CGA(Arg) mutations, were found in 95% (20/21) of primary hereditary melanomas but in only 10% (1/10) of sporadic melanomas (P<.001). Multiple activating NRAS mutations were detected in tumor cells from different regions of individual primary melanomas in nine patients. Activating mutations that were detected in the primary melanomas of these patients were also retained in their metastases. NRAS mutations at sites other than codon 61 were also present in the primary melanomas, indicating genetic instability of this locus. NRAS codon 61 mutations were also detected in dysplastic nevi and in an in situ melanoma, suggesting a role for such mutations during early melanoma development. CONCLUSIONS: The high frequency of NRAS codon 61 mutations detected in these hereditary melanomas may be the result of a hypermutability phenotype associated with a hereditary predisposition for melanoma development in patients with germline CDKN2A mutations.