Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(24)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38649269

RESUMEN

Genetic variants in the apolipoprotein E (APOE) gene affect the onset and progression of Alzheimer's disease (AD). The APOE Christchurch (APOE Ch) variant has been identified as the most prominent candidate for preventing the onset and progression of AD. In this study, we generated isogenic APOE3Ch/3Ch human-induced pluripotent stem cells (iPSCs) from APOE3/3 healthy control female iPSCs and induced them into astrocytes. RNA expression analysis revealed the inherent resilience of APOE3Ch/3Ch astrocytes to induce a reactive state in response to inflammatory cytokines. Moreover, cytokine treatment changed astrocytic morphology with more complexity in APOE3/3 astrocytes, but not in APOE3Ch/3Ch astrocytes, indicating resilience of the rare variant to a reactive state. Interestingly, we observed robust morphological alterations containing more intricate processes when cocultured with iPSC-derived cortical neurons, in which APOE3Ch/3Ch astrocytes reduced complexity compared with APOE3/3 astrocytes. To assess the impacts of tau propagation effects, we next developed a sophisticated and sensitive assay utilizing cortical neurons derived from human iPSCs, previously generated from donors of both sexes. We showed that APOE3Ch/3Ch astrocytes effectively mitigated tau propagation within iPSC-derived neurons. This study provides important experimental evidence of the characteristic functions exhibited by APOE3Ch/3Ch astrocytes, thereby offering valuable insights for the advancement of novel clinical interventions in AD research.


Asunto(s)
Astrocitos , Células Madre Pluripotentes Inducidas , Proteínas tau , Astrocitos/metabolismo , Humanos , Proteínas tau/metabolismo , Proteínas tau/genética , Femenino , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteína E3/genética , Neuronas/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Células Cultivadas , Técnicas de Cocultivo
2.
J Biol Chem ; 298(8): 102191, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35753345

RESUMEN

Aberrant cytoplasmic accumulation of an RNA-binding protein, fused in sarcoma (FUS), characterizes the neuropathology of subtypes of ALS and frontotemporal lobar degeneration, although the effects of post-translational modifications of FUS, especially phosphorylation, on its neurotoxicity have not been fully characterized. Here, we show that casein kinase 1δ (CK1δ) phosphorylates FUS at 10 serine/threonine residues in vitro using mass spectrometric analyses. We also show that phosphorylation by CK1δ or CK1ε significantly increased the solubility of FUS in human embryonic kidney 293 cells. In transgenic Drosophila that overexpress wt or P525L ALS-mutant human FUS in the retina or in neurons, we found coexpression of human CK1δ or its Drosophila isologue Dco in the photoreceptor neurons significantly ameliorated the observed retinal degeneration, and neuronal coexpression of human CK1δ extended fly life span. Taken together, our data suggest a novel regulatory mechanism of the assembly and toxicity of FUS through CK1δ/CK1ε-mediated phosphorylation, which could represent a potential therapeutic target in FUS proteinopathies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Caseína Cinasa 1 épsilon , Quinasa Idelta de la Caseína , Proteínas de Drosophila , Degeneración Lobar Frontotemporal , Sarcoma , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Caseína Cinasa 1 épsilon/genética , Quinasa Idelta de la Caseína/genética , Quinasa Idelta de la Caseína/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Humanos , Mutación , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo
3.
Neurobiol Dis ; 162: 105585, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34915152

RESUMEN

Formation of cytoplasmic RNA-protein structures called stress granules (SGs) is a highly conserved cellular response to stress. Abnormal metabolism of SGs may contribute to the pathogenesis of (neuro)degenerative diseases such as amyotrophic lateral sclerosis (ALS). Many SG proteins are affected by mutations causative of these conditions, including fused in sarcoma (FUS). Mutant FUS variants have high affinity to SGs and also spontaneously form de novo cytoplasmic RNA granules. Mutant FUS-containing assemblies (mFAs), often called "pathological SGs", are proposed to play a role in ALS-FUS pathogenesis. However, structural differences between mFAs and physiological SGs remain largely unknown therefore it is unclear whether mFAs can functionally substitute for SGs and how they affect cellular stress responses. Here we used affinity purification to isolate mFAs and physiological SGs and compare their protein composition. We found that proteins within mFAs form significantly more physical interactions than those in SGs however mFAs fail to recruit many factors involved in signal transduction. Furthermore, we found that proteasome subunits and certain nucleocytoplasmic transport factors are depleted from mFAs, whereas translation elongation, mRNA surveillance and splicing factors as well as mitochondrial proteins are enriched in mFAs, as compared to SGs. Validation experiments for a mFA-specific protein, hnRNPA3, confirmed its RNA-dependent interaction with FUS and its sequestration into FUS inclusions in cultured cells and in a FUS transgenic mouse model. Silencing of the Drosophila hnRNPA3 ortholog was deleterious and potentiated human FUS toxicity in the retina of transgenic flies. In conclusion, we show that SG-like structures formed by mutant FUS are structurally distinct from SGs, prone to persistence, likely cannot functionally replace SGs, and affect a spectrum of cellular pathways in stressed cells. Results of our study support a pathogenic role for cytoplasmic FUS assemblies in ALS-FUS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Citoplasma/metabolismo , Cuerpos de Inclusión/metabolismo , Ratones , Mutación , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Gránulos de Estrés , Estrés Fisiológico
4.
PLoS Genet ; 15(8): e1008308, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31390360

RESUMEN

Proteins associated with familial neurodegenerative disease often aggregate in patients' neurons. Several such proteins, e.g. TDP-43, aggregate and are toxic when expressed in yeast. Deletion of the ATXN2 ortholog, PBP1, reduces yeast TDP-43 toxicity, which led to identification of ATXN2 as an amyotrophic lateral sclerosis (ALS) risk factor and therapeutic target. Likewise, new yeast neurodegenerative disease models could facilitate identification of other risk factors and targets. Mutations in SS18L1, encoding the calcium-responsive transactivator (CREST) chromatin-remodeling protein, are associated with ALS. We show that CREST is toxic in yeast and forms nuclear and occasionally cytoplasmic foci that stain with Thioflavin-T, a dye indicative of amyloid-like protein. Like the yeast chromatin-remodeling factor SWI1, CREST inhibits silencing of FLO genes. Toxicity of CREST is enhanced by the [PIN+] prion and reduced by deletion of the HSP104 chaperone required for the propagation of many yeast prions. Likewise, deletion of PBP1 reduced CREST toxicity and aggregation. In accord with the yeast data, we show that the Drosophila ortholog of human ATXN2, dAtx2, is a potent enhancer of CREST toxicity. Downregulation of dAtx2 in flies overexpressing CREST in retinal ganglion cells was sufficient to largely rescue the severe degenerative phenotype induced by human CREST. Overexpression caused considerable co-localization of CREST and PBP1/ATXN2 in cytoplasmic foci in both yeast and mammalian cells. Thus, co-aggregation of CREST and PBP1/ATXN2 may serve as one of the mechanisms of PBP1/ATXN2-mediated toxicity. These results extend the spectrum of ALS associated proteins whose toxicity is regulated by PBP1/ATXN2, suggesting that therapies targeting ATXN2 may be effective for a wide range of neurodegenerative diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Ataxina-2/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Animales Modificados Genéticamente , Ataxina-2/genética , Proteínas Portadoras/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Ratones , Priones/metabolismo , Células Ganglionares de la Retina/patología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/genética
5.
RNA Biol ; 18(11): 1546-1554, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33427561

RESUMEN

Pathological changes involving TDP-43 protein ('TDP-43 proteinopathy') are typical for several neurodegenerative diseases, including frontotemporal lobar degeneration (FTLD). FTLD-TDP cases are characterized by increased binding of TDP-43 to an abundant lncRNA, NEAT1, in the cortex. However it is unclear whether enhanced TDP-43-NEAT1 interaction represents a protective mechanism. We show that accumulation of human TDP-43 leads to upregulation of the constitutive NEAT1 isoform, NEAT1_1, in cultured cells and in the brains of transgenic mice. Further, we demonstrate that overexpression of NEAT1_1 ameliorates TDP-43 toxicity in Drosophila and yeast models of TDP-43 proteinopathy. Thus, NEAT1_1 upregulation may be protective in TDP-43 proteinopathies affecting the brain. Approaches to boost NEAT1_1 expression in the CNS may prove useful in the treatment of these conditions.


Asunto(s)
Esclerosis Amiotrófica Lateral/prevención & control , Encéfalo/metabolismo , Proteínas de Unión al ADN/toxicidad , Demencia Frontotemporal/prevención & control , Neuroblastoma/prevención & control , ARN Largo no Codificante/genética , Proteinopatías TDP-43/prevención & control , Esclerosis Amiotrófica Lateral/etiología , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Drosophila melanogaster , Demencia Frontotemporal/etiología , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroblastoma/etiología , Neuroblastoma/metabolismo , Neuroblastoma/patología , ARN Largo no Codificante/administración & dosificación , Saccharomyces cerevisiae , Proteinopatías TDP-43/etiología , Proteinopatías TDP-43/metabolismo , Proteinopatías TDP-43/patología
6.
Hum Mol Genet ; 27(8): 1353-1365, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29425337

RESUMEN

Aggregation of fused in sarcoma (FUS) protein, and mutations in FUS gene, are causative to a range of neurodegenerative disorders including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. To gain insights into the molecular mechanism whereby FUS causes neurodegeneration, we generated transgenic Drosophila melanogaster overexpressing human FUS in the photoreceptor neurons, which exhibited mild retinal degeneration. Expression of familial ALS-mutant FUS aggravated the degeneration, which was associated with an increase in cytoplasmic localization of FUS. A carboxy-terminally truncated R495X mutant FUS also was localized in cytoplasm, whereas the degenerative phenotype was diminished. Double expression of R495X and wild-type FUS dramatically exacerbated degeneration, sequestrating wild-type FUS into cytoplasmic aggregates. Notably, replacement of all tyrosine residues within the low-complexity domain, which abolished self-assembly of FUS, completely eliminated the degenerative phenotypes. Taken together, we propose that self-assembly of FUS through its low-complexity domain contributes to FUS-induced neurodegeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Demencia Frontotemporal/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/genética , Células Fotorreceptoras de Invertebrados/metabolismo , Proteínas Recombinantes de Fusión/genética , Degeneración Retiniana/genética , Secuencia de Aminoácidos , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Expresión Génica , Células HEK293 , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/química , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Humanos , Mutagénesis Sitio-Dirigida , Mutación , Células Fotorreceptoras de Invertebrados/patología , Dominios Proteicos , Pliegue de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Tirosina/química , Tirosina/metabolismo
7.
Proc Natl Acad Sci U S A ; 114(45): E9645-E9654, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29042514

RESUMEN

Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by pathology of accumulated amyloid ß (Aß) and phosphorylated tau proteins in the brain. Postmortem degradation and cellular complexity within the brain have limited approaches to molecularly define the causal relationship between pathological features and neuronal dysfunction in AD. To overcome these limitations, we analyzed the neuron-specific DNA methylome of postmortem brain samples from AD patients, which allowed differentially hypomethylated region of the BRCA1 promoter to be identified. Expression of BRCA1 was significantly up-regulated in AD brains, consistent with its hypomethylation. BRCA1 protein levels were also elevated in response to DNA damage induced by Aß. BRCA1 became mislocalized to the cytoplasm and highly insoluble in a tau-dependent manner, resulting in DNA fragmentation in both in vitro cellular and in vivo mouse models. BRCA1 dysfunction under Aß burden is consistent with concomitant deterioration of genomic integrity and synaptic plasticity. The Brca1 promoter region of AD model mice brain was similarly hypomethylated, indicating an epigenetic mechanism underlying BRCA1 regulation in AD. Our results suggest deterioration of DNA integrity as a central contributing factor in AD pathogenesis. Moreover, these data demonstrate the technical feasibility of using neuron-specific DNA methylome analysis to facilitate discovery of etiological candidates in sporadic neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/genética , Proteína BRCA1/genética , Epigénesis Genética/genética , Neuronas/metabolismo , Proteínas tau/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Encéfalo/metabolismo , Daño del ADN/genética , Metilación de ADN/genética , Modelos Animales de Enfermedad , Humanos , Plasticidad Neuronal/genética , Regiones Promotoras Genéticas/genética , Transducción de Señal/genética , Regulación hacia Arriba/genética
8.
Acta Neuropathol ; 136(4): 569-587, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29770843

RESUMEN

In this study, we have compared the severity of amyloid plaque formation and cerebral amyloid angiopathy (CAA), and the subtype pattern of CAA pathology itself, between APP genetic causes of AD (APPdup, APP mutations), older individuals with Down syndrome (DS) showing the pathology of Alzheimer's disease (AD) and individuals with sporadic (early and late onset) AD (sEOAD and sLOAD, respectively). The aim of this was to elucidate important group differences and to provide mechanistic insights related to clinical and neuropathological phenotypes. Since lipid and cholesterol metabolism is implicated in AD as well as vascular disease, we additionally aimed to explore the role of APOE genotype in CAA severity and subtypes. Plaque formation was greater in DS and missense APP mutations than in APPdup, sEOAD and sLOAD cases. Conversely, CAA was more severe in APPdup and missense APP mutations, and in DS, compared to sEOAD and sLOAD. When stratified by CAA subtype from 1 to 4, there were no differences in plaque scores between the groups, though in patients with APPdup, APP mutations and sEOAD, types 2 and 3 CAA were more common than type 1. Conversely, in DS, sLOAD and controls, type 1 CAA was more common than types 2 and 3. APOE ε4 allele frequency was greater in sEOAD and sLOAD compared to APPdup, missense APP mutations, DS and controls, and varied between each of the CAA phenotypes with APOE ε4 homozygosity being more commonly associated with type 3 CAA than types 1 and 2 CAA in sLOAD and sEOAD. The differing patterns in CAA within individuals of each group could be a reflection of variations in the efficiency of perivascular drainage, this being less effective in types 2 and 3 CAA leading to a greater burden of CAA in parenchymal arteries and capillaries. Alternatively, as suggested by immunostaining using carboxy-terminal specific antibodies, it may relate to the relative tissue burdens of the two major forms of Aß, with higher levels of Aß40 promoting a more 'aggressive' form of CAA, and higher levels of Aß42(3) favouring a greater plaque burden. Possession of APOE ε4 allele, especially ε4 homozygosity, favours development of CAA generally, and as type 3 particularly, in sEOAD and sLOAD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Amiloide/metabolismo , Vasos Sanguíneos/metabolismo , Síndrome de Down/genética , Síndrome de Down/patología , Adulto , Anciano , Anciano de 80 o más Años , Apolipoproteínas E/genética , Angiopatía Amiloide Cerebral/genética , Angiopatía Amiloide Cerebral/patología , Femenino , Duplicación de Gen , Frecuencia de los Genes , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Mutación Missense , Placa Amiloide/genética , Placa Amiloide/patología
9.
J Biol Chem ; 291(45): 23464-23476, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27634045

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive and selective loss of motor neurons. Causative genes for familial ALS (fALS), e.g. TARDBP or FUS/TLS, have been found, among which mutations within the profilin 1 (PFN1) gene have recently been identified in ALS18. To elucidate the mechanism whereby PFN1 mutations lead to neuronal death, we generated transgenic Drosophila melanogaster overexpressing human PFN1 in the retinal photoreceptor neurons. Overexpression of wild-type or fALS mutant PFN1 caused no degenerative phenotypes in the retina. Double overexpression of fALS mutant PFN1 and human TDP-43 markedly exacerbated the TDP-43-induced retinal degeneration, i.e. vacuolation and thinning of the retina, whereas co-expression of wild-type PFN1 did not aggravate the degenerative phenotype. Notably, co-expression of TDP-43 with fALS mutant PFN1 increased the cytoplasmic localization of TDP-43, the latter remaining in nuclei upon co-expression with wild-type PFN1, whereas co-expression of TDP-43 lacking the nuclear localization signal with the fALS mutant PFN1 did not aggravate the retinal degeneration. Knockdown of endogenous Drosophila PFN1 did not alter the degenerative phenotypes of the retina in flies overexpressing wild-type TDP-43 These data suggest that ALS-linked PFN1 mutations exacerbate TDP-43-induced neurodegeneration in a gain-of-function manner, possibly by shifting the localization of TDP-43 from nuclei to cytoplasm.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Profilinas/genética , Retina/patología , Degeneración Retiniana/genética , Esclerosis Amiotrófica Lateral/complicaciones , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Citoplasma/genética , Citoplasma/metabolismo , Citoplasma/patología , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Células HEK293 , Humanos , Mutación , Profilinas/análisis , Retina/metabolismo , Degeneración Retiniana/complicaciones , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Regulación hacia Arriba
10.
J Biol Chem ; 290(24): 15163-74, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-25918154

RESUMEN

Human APOE ϵ4 allele is a strong genetic risk factor of Alzheimer disease. Neuropathological and genetic studies suggested that apolipoprotein E4 (apoE4) protein facilitates deposition of amyloid ß peptide (Aß) in the brain, although the mechanism whereby apoE4 increases amyloid aggregates remains elusive. Here we show that injection of Aß protofibrils induced Aß deposition in the brain of APP transgenic mice, suggesting that Aß protofibrils acted as a seed for aggregation and deposition of Aß in vivo. Injection of Aß protofibrils together with apoE3 significantly attenuated Aß deposition, whereas apoE4 did not have this effect. In vitro assays revealed that the conversion of Aß protofibrils to fibrils progressed more slowly upon coincubation with apoE2 or apoE3 compared with that with apoE4. Aß protofibrils complexed with apoE4 were less stable than those with apoE2 or apoE3. These data suggest that the suppression effect of apoE2 or apoE3 on the structural conversion of Aß protofibrils to fibrils is stronger than those of apoE4, thereby impeding ß-amyloid deposition.


Asunto(s)
Amiloide/biosíntesis , Apolipoproteínas E/fisiología , Encéfalo/metabolismo , Isoformas de Proteínas/fisiología , Amiloide/química , Animales , Apolipoproteínas E/genética , Ensayo de Inmunoadsorción Enzimática , Técnicas In Vitro , Ratones , Ratones Transgénicos
11.
J Neurosci ; 34(4): 1370-9, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24453327

RESUMEN

Formation of proper neuromuscular connections is a process coordinated by both motoneuron-intrinsic and target-dependent programs. Under these programs, motoneurons innervate target muscles, escape programmed cell death during fetal development, and form neuromuscular junctions (NMJ). Although a number of studies have revealed molecules involved in axon guidance to target muscles and NMJ formation, little is known about the molecular mechanisms linking intramuscular innervation and target-derived trophic factor-dependent prevention of motoneuron apoptosis. Here we studied the physiological function of CLAC-P/collagen XXV, a transmembrane-type collagen originally identified as a component of senile plaque amyloid of Alzheimer's disease brains, by means of generating Col25a1-deficient (KO) mice. Col25a1 KO mice died immediately after birth of respiratory failure. In Col25a1 KO mice, motor axons projected properly toward the target muscles but failed to elongate and branch within the muscle, followed by degeneration of axons. Failure of muscular innervation in Col25a1 KO mice led to excessive apoptosis during development, resulting in almost complete and exclusive loss of spinal motoneurons and immaturity in skeletal muscle development. Bax deletion in Col25a1 KO mice rescued motoneurons from apoptosis, although motor axons remained halted around the muscle entry site. Furthermore, these motoneurons were positive for phosphorylated c-Jun, an indicator of insufficient supply of target-derived survival signals. Together, these observations indicate that CLAC-P/collagen XXV is a novel essential factor that regulates the initial phase of intramuscular motor innervation, which is required for subsequent target-dependent motoneuron survival and NMJ formation during development.


Asunto(s)
Colágeno/metabolismo , Neuronas Motoras/metabolismo , Músculo Esquelético/inervación , Neurogénesis/fisiología , Unión Neuromuscular/crecimiento & desarrollo , Animales , Inmunohistoquímica , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Ratones , Ratones Noqueados , Neuronas Motoras/citología , Unión Neuromuscular/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Hum Mol Genet ; 22(22): 4474-84, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23804749

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive and selective loss of motor neurons. The discovery of mutations in the gene encoding an RNA-binding protein, TAR DNA-binding protein of 43 kD (TDP-43), in familial ALS, strongly implicated abnormalities in RNA processing in the pathogenesis of ALS, although the mechanisms whereby TDP-43 leads to neurodegeneration remain elusive. To clarify the mechanism of degeneration caused by TDP-43, we generated transgenic Drosophila melanogaster expressing a series of systematically modified human TDP-43 genes in the retinal photoreceptor neurons. Overexpression of wild-type TDP-43 resulted in vacuolar degeneration of the photoreceptor neurons associated with thinning of the retina, which was significantly exacerbated by mutations of TDP-43 linked to familial ALS or disrupting its nuclear localization signal (NLS). Remarkably, these degenerative phenotypes were completely normalized by addition of a mutation or deletion of the RNA recognition motif that abolishes the RNA binding ability of TDP-43. Altogether, our results suggest that RNA binding is key to the neurodegeneration caused by overexpression of TDP-43, and that abnormalities in RNA processing may be crucial to the pathogenesis of TDP-43 proteinopathy.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila melanogaster/genética , ARN/metabolismo , Proteinopatías TDP-43/patología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Animales Modificados Genéticamente , Sitios de Unión , Citosol/metabolismo , Proteínas de Unión al ADN/química , Modelos Animales de Enfermedad , Drosophila melanogaster/metabolismo , Humanos , Degeneración Nerviosa , Fenotipo , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/patología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Proteinopatías TDP-43/genética , Proteinopatías TDP-43/metabolismo
14.
FASEB J ; 27(8): 3239-48, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23640054

RESUMEN

There is a growing body of evidence that soluble oligomeric forms of amyloid ß (Aß) play a critical role in Alzheimer's disease (AD). Despite the importance of soluble Aß oligomers as a therapeutic target for AD, the dynamic metabolism of these Aß species in vivo has not been elucidated because of the difficulty in monitoring brain Aß oligomers in living animals. Here, using a unique large pore-sized membrane microdialysis, we characterized soluble Aß oligomers in brain interstitial fluid (ISF) of awake, freely moving APP/PS1 transgenic and control WT mice. We could detect high-molecular-weight (HMW) and low-molecular-weight (LMW) Aß oligomers in the brain ISF of living animals, which increased dramatically in an age-dependent manner (5- to 8-fold increase, 4 vs. 17-18 mo). Notably, HMW Aß decreased more slowly than other forms of Aß after acute γ-secretase inhibition [% decrease from the baseline (HMW vs. LMW) was 36.9 vs. 74.1% (Aß40, P<0.05) and 25.4 vs. 88.0% (Aß42, P<0.01)], suggesting that HMW Aß oligomers clear more slowly than other forms from the brain. These data reveal the dynamic metabolism of neurotoxic Aß oligomers in AD brain and could provide new insights into Aß-targeted therapies for AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Factores de Edad , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/química , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Benzodiazepinonas/farmacología , Encéfalo/efectos de los fármacos , Líquido Extracelular/efectos de los fármacos , Líquido Extracelular/metabolismo , Humanos , Immunoblotting , Ratones , Ratones Transgénicos , Microdiálisis/métodos , Peso Molecular , Presenilina-1/genética , Presenilina-1/metabolismo , Multimerización de Proteína
15.
J Neurosci ; 32(15): 5298-309, 2012 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-22496575

RESUMEN

Calcineurin (CaN) activation is critically involved in the regulation of spine morphology in response to oligomeric amyloid-ß (Aß) as well as in synaptic plasticity in normal memory, but no existing techniques can monitor the spatiotemporal pattern of CaN activity. Here, we use a spectral fluorescence resonance energy transfer approach to monitor CaN activation dynamics in real time with subcellular resolution. When oligomeric Aß derived from Tg2576 murine transgenic neurons or human AD brains were applied to wild-type murine primary cortical neurons, we observe a dynamic progression of CaN activation within minutes, first in dendritic spines, and then in the cytoplasm and, in hours, in the nucleus. CaN activation in spines leads to rapid but reversible morphological changes in spines and in postsynaptic proteins; longer exposure leads to NFAT (nuclear factor of activated T-cells) translocation to the nucleus and frank spine loss. These results provide a framework for understanding the role of calcineurin in synaptic alterations associated with AD pathogenesis.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Calcineurina/fisiología , Núcleo Celular/fisiología , Espinas Dendríticas/fisiología , Actinas/genética , Actinas/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Línea Celular , Cromatografía en Gel , Medios de Cultivo Condicionados , Citoplasma/metabolismo , ADN Complementario/biosíntesis , ADN Complementario/genética , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Factores de Transcripción NFATC/metabolismo , Plásmidos/genética , Transporte de Proteínas , Receptores AMPA/genética , Receptores AMPA/metabolismo , Receptores AMPA/fisiología , Fracciones Subcelulares/metabolismo , Sinapsis/fisiología
16.
J Neurosci ; 32(9): 3176-92, 2012 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-22378890

RESUMEN

Amyloid ß (Aß) peptides, the main pathological species associated with Alzheimer's disease (AD), disturb intracellular calcium homeostasis, which in turn activates the calcium-dependent phosphatase calcineurin (CaN). CaN activation induced by Aß leads to pathological morphological changes in neurons, and overexpression of constitutively active calcineurin is sufficient to generate a similar phenotype, even without Aß. Here, we tested the hypothesis that calcineurin mediates neurodegenerative effects via activation of the nuclear transcription factor of activated T-cells (NFAT). We found that both spine loss and dendritic branching simplification induced by Aß exposure were mimicked by constitutively active NFAT, and abolished when NFAT activation was blocked using the genetically encoded inhibitor VIVIT. When VIVIT was specifically addressed to the nucleus, identical beneficial effects were observed, thus enforcing the role of NFAT transcriptional activity in Aß-related neurotoxicity. In vivo, when VIVIT or its nuclear counterpart were overexpressed in a transgenic model of Alzheimer's disease via a gene therapy approach, the spine loss and neuritic abnormalities observed in the vicinity of amyloid plaques were blocked. Overall, these results suggest that NFAT/calcineurin transcriptional cascades contribute to Aß synaptotoxicity, and may provide a new specific set of pathways for neuroprotective strategies.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/toxicidad , Modelos Animales de Enfermedad , Factores de Transcripción NFATC/antagonistas & inhibidores , Factores de Transcripción NFATC/fisiología , Transducción de Señal/fisiología , Enfermedad de Alzheimer/patología , Animales , Dendritas/patología , Dendritas/fisiología , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Inhibición Neural/fisiología , Oligopéptidos/genética , Oligopéptidos/farmacología
17.
J Neurosci ; 32(43): 15181-92, 2012 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-23100439

RESUMEN

Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder causing dementia. Massive deposition of amyloid ß peptide (Aß) as senile plaques in the brain is the pathological hallmark of AD, but oligomeric, soluble forms of Aß have been implicated as the synaptotoxic component. The apolipoprotein E ε 4 (apoE ε4) allele is known to be a genetic risk factor for developing AD. However, it is still unknown how apoE impacts the process of Aß oligomerization. Here, we found that the level of Aß oligomers in APOE ε4/ε4 AD patient brains is 2.7 times higher than those in APOE ε3/ε3 AD patient brains, matched for total plaque burden, suggesting that apoE4 impacts the metabolism of Aß oligomers. To test this hypothesis, we examined the effect of apoE on Aß oligomer formation. Using both synthetic Aß and a split-luciferase method for monitoring Aß oligomers, we observed that apoE increased the level of Aß oligomers in an isoform-dependent manner (E2 < E3 < E4). This effect appears to be dependent on the ApoE C-terminal domain. Moreover, these results were confirmed using endogenous apoE isolated from the TBS-soluble fraction of human brain, which increased the formation of Aß oligomers. Together, these data show that lipidated apoE, especially apoE4, increases Aß oligomers in the brain. Higher levels of Aß oligomers in the brains of APOE ε4/ε4 carriers compared with APOE ε3/ε3 carriers may increase the loss of dendritic spines and accelerate memory impairments, leading to earlier cognitive decline in AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Encéfalo/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/farmacología , Análisis de Varianza , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Astrocitos/metabolismo , Ensayo de Inmunoadsorción Enzimática , Femenino , Proteínas Fluorescentes Verdes/genética , Células HEK293/efectos de los fármacos , Células HEK293/metabolismo , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Masculino , Morfolinos/farmacología , Fragmentos de Péptidos/farmacología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transfección
18.
J Biol Chem ; 287(12): 8714-23, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22277654

RESUMEN

Multiple lines of evidence indicate a strong relationship between Αß peptide-induced neurite degeneration and the progressive loss of cognitive functions in Alzheimer disease (AD) patients and in AD animal models. This prompted us to develop a high content screening assay (HCS) and Neurite Image Quantitator (NeuriteIQ) software to quantify the loss of neuronal projections induced by Aß peptide neurons and enable us to identify new classes of neurite-protective small molecules, which may represent new leads for AD drug discovery. We identified thirty-six inhibitors of Aß-induced neurite loss in the 1,040-compound National Institute of Neurological Disorders and Stroke (NINDS) custom collection of known bioactives and FDA approved drugs. Activity clustering showed that non-steroidal anti-inflammatory drugs (NSAIDs) were significantly enriched among the hits. Notably, NSAIDs have previously attracted significant attention as potential drugs for AD; however their mechanism of action remains controversial. Our data revealed that cyclooxygenase-2 (COX-2) expression was increased following Aß treatment. Furthermore, multiple distinct classes of COX inhibitors efficiently blocked neurite loss in primary neurons, suggesting that increased COX activity contributes to Aß peptide-induced neurite loss. Finally, we discovered that the detrimental effect of COX activity on neurite integrity may be mediated through the inhibition of peroxisome proliferator-activated receptor γ (PPARγ) activity. Overall, our work establishes the feasibility of identifying small molecule inhibitors of Aß-induced neurite loss using the NeuriteIQ pipeline and provides novel insights into the mechanisms of neuroprotection by NSAIDs.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos , Neuritas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Humanos , Degeneración Nerviosa , Neuritas/metabolismo , PPAR gamma/agonistas
19.
Neurobiol Dis ; 50: 127-34, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23064434

RESUMEN

Deposition of amyloid ß (Aß) containing plaques in the brain is one of the neuropathological hallmarks of Alzheimer's disease (AD). It has been suggested that modulation of neuronal activity may alter Aß production in the brain. We postulate that these changes in Aß production are due to changes in the rate-limiting step of Aß generation, APP cleavage by γ-secretase. By combining biochemical approaches with fluorescence lifetime imaging microscopy, we found that neuronal inhibition decreases endogenous APP and PS1 interactions, which correlates with reduced Aß production. By contrast, neuronal activation had a two-phase effect: it initially enhanced APP-PS1 interaction leading to increased Aß production, which followed by a decrease in the APP and PS1 proximity/interaction. Accordingly, treatment of neurons with naturally secreted Aß isolated from AD brain or with synthetic Aß resulted in reduced APP and PS1 proximity. Moreover, applying low concentration of Aß(42) to cultured neurons inhibited de novo Aß synthesis. These data provide evidence that neuronal activity regulates endogenous APP-PS1 interactions, and suggest a model of a product-enzyme negative feedback. Thus, under normal physiological conditions Aß may impact its own production by modifying γ-secretase cleavage of APP. Disruption of this negative modulation may cause Aß overproduction leading to neurotoxicity.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Neuronas/metabolismo , Presenilina-1/metabolismo , Enfermedad de Alzheimer/patología , Animales , Western Blotting , Retroalimentación Fisiológica , Humanos , Inmunohistoquímica , Inmunoprecipitación , Ratones , Ratones Transgénicos , Neuronas/patología
20.
Am J Pathol ; 181(4): 1426-35, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22867711

RESUMEN

In Alzheimer disease (AD), deposition of neurofibrillary tangles and loss of synapses in the neocortex and limbic system each correlate strongly with cognitive impairment. Tangles are composed of misfolded hyperphosphorylated tau proteins; however, the link between tau abnormalities and synaptic dysfunction remains unclear. We examined the location of tau in control and AD cortices using biochemical and morphologic methods. We found that, in addition to its well-described axonal localization, normal tau is present at both presynaptic and postsynaptic terminals in control human brains. In AD, tau becomes hyperphosphorylated and misfolded at both presynaptic and postsynaptic terminals, and this abnormally posttranslationally modified tau is enriched in synaptoneurosomal fractions. Synaptic tau seems to be hyperphosphorylated and ubiquitinated, and forms stable oligomers resistant to SDS denaturation. The accumulation of hyperphosphorylated tau oligomers at human AD synapses is associated with increased ubiquitinated substrates and increased proteasome components, consistent with dysfunction of the ubiquitin-proteasome system. Our findings suggest that synaptic hyperphosphorylated tau oligomers may be an important mediator of the proteotoxicity that disrupts synapses in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Complejo de la Endopetidasa Proteasomal/metabolismo , Sinapsis/metabolismo , Ubiquitina/metabolismo , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Biomarcadores/metabolismo , Centrifugación por Gradiente de Densidad , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Fosforilación , Terminales Presinápticos/metabolismo , Terminales Presinápticos/patología , Unión Proteica , Estructura Cuaternaria de Proteína , Transporte de Proteínas , Sinapsis/patología , Sinapsis/ultraestructura , Ubiquitinación , Proteínas tau/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA