Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Rep ; 50(7): 5647-5654, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37193801

RESUMEN

BACKGROUND: Psychological stress, as an important cofactor in the development of many acute and chronic diseases, is crucial for general health or well-being, and improved markers are needed to distinguish situations of progressive pathological development, such as depression, anxiety, or burnout, to be recognized at an early stage. Epigenetic biomarkers play an important role in the early detection and treatment of complex diseases such as cancer, and metabolic or mental disorders. Therefore, this study aimed to identify so-called miRNAs, which would be suitable as stress-related biomarkers. METHODS AND RESULTS: In this study, 173 participants (36.4% males, and 63.6% females) were interviewed about stress, stress-related diseases, lifestyle, and diet to assess their acute and chronic psychological stress status. Using qPCR analysis, 13 different miRNAs (miR-10a-5p, miR-15a-5p, miR-16-5p, miR-19b-3p, miR-26b-5p, miR-29c-3p, miR-106b-5p, miR-126-3p, miR-142-3p, let-7a-5p, let-7g-5p, miR-21-5p, and miR-877-5p) were analyzed in dried capillary blood samples. Four miRNAs were identified, miR-10a-5p, miR-15a-5p, let-7a-5p, and let-7g-5p (p < 0.05), which could be used as possible candidates for measuring pathological forms of acute or chronic stress. Let-7a-5p, let-7g-5p, and miR-15a-5p (p < 0.05) were also significantly higher in subjects with at least one stress-related disease. Further, correlations were identified between let-7a-5p and meat consumption (p < 0.05) and between miR-15a-5p and coffee consumption (p < 0.05). CONCLUSION: The examination of these four miRNAs as biomarkers using a minimally invasive method offers the possibility of detecting health problems at an early stage and counteracting them to maintain general and mental health.


Asunto(s)
Salud Mental , MicroARNs , Masculino , Femenino , Humanos , MicroARNs/metabolismo , Biomarcadores , Estrés Psicológico/genética
2.
Molecules ; 25(24)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353228

RESUMEN

Aging and the emergence of age-associated illnesses are one of the major challenges of our present society. Alzheimer's disease (AD) is closely associated with aging and is defined by increasing memory loss and severe dementia. Currently, there are no therapy options available that halt AD progression. This work investigates three hallmarks of the disease (autophagy, neuroinflammation, and senescence) and systematically analyzes if there is a beneficial effect from three substances derived from food sources, the so called "nutraceuticals" epigallocatechin gallate, fisetin, and spermidine, on these hallmarks. The results imply a positive outlook for the reviewed substances to qualify as a novel treatment option for AD. A combination of nutraceutical substances and other preventive measures could have significant clinical impact in a multi-layered therapy approach to counter AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Autofagia/efectos de los fármacos , Catequina/análogos & derivados , Flavonoles/farmacología , Inflamación/tratamiento farmacológico , Espermidina/farmacología , Animales , Catequina/administración & dosificación , Catequina/farmacología , Senescencia Celular/efectos de los fármacos , Suplementos Dietéticos , Flavonoles/administración & dosificación , Humanos , Espermidina/administración & dosificación
3.
J Food Sci Technol ; 55(8): 3232-3240, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30065434

RESUMEN

Clostridia are widespread and some of them are serious human pathogens. Identification of Clostridium spp. is important for managing microbiological risks in the food industry. Samples derived from sheep and cattle carcasses from a slaughterhouse in Iran were analyzed by MALDI-TOF MS using direct transfer and extended direct transfer sample preparation methods and 16S rDNA sequencing. MALDI-TOF MS could identify ten species in 224 out of 240 Clostridium isolates. In comparison to the 16S rDNA sequencing, correct identification rate of the Clostridium spp. at the species level by MALDI-TOF MS technique was 93.3%. 16 isolates were not identified by MALDI-TOF MS but 16s rDNA sequencing identified them as C. estertheticum, C. frigidicarnis, and C. gasigenes species. The most frequently identified Clostridium species were: C. sporogenes (13%), C. cadaveris (12.5%), C. cochlearium (12%) and C. perfringens (10%). Extended direct transfer method [2.26 ± 0.18 log (score)] in comparison to direct transfer method [2.15 ± 0.23 log (score)] improved Clostridium spp. IDENTIFICATION: Using a cut-off score of 1.7 was sufficient for accurate identification of Clostridium species. MALDI-TOF MS identification scores for Clostridium spp. decreased with longer incubation time. Clostridium species predominantly were isolated from carcasses after skinning and evisceration steps in the slaughterhouse. MALDI-TOF MS could be an accurate way to identify Clostridium species. Moreover, continuous improvement of the database and MALDI-TOF MS instrument enhance its performance in food control laboratories.

4.
Curr Microbiol ; 73(2): 265-72, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27155845

RESUMEN

This work were aimed to (a) determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Carum copticum essential oil (EO) against Escherichia. coli O157:H7 in vitro Trypticase Soy Broth, (TSB) and in ground beef; (b) evaluation of the effect of sub-inhibitory concentrations (sub-MICs) of EO on the growth of bacterium in TSB over 72 h (at 35 °C) and ground beef over 9 days (at 4 °C); and (c) investigation of gene expression involved in Shiga toxins production using relative quantitative real-time PCR method. The MIC in broth and ground beef medium were determined as 0.05 (v/v) and 1.75 % (v/w), respectively. In comparison with control cultures, the EO concentration of 0.03 % in broth caused reduction of colony counting as 1.93, 1.79, and 2.62 log10 CFU ml(-1) after 24, 48, and 72 h at 35 °C, and similarly EO (0.75 %) in ground beef resulted to reduction of colony counting as 1.03, 0.92, 1.48, and 2.12 log10 CFU g (-1) after 2, 5, 7, and 9 days at 4 °C, respectively. An increase and decrease in gene expression were observed as result of EO addition (0.03 %) to broth and (0.5 %) to ground beef was noticed, respectively.


Asunto(s)
Antibacterianos/farmacología , Carum/química , Escherichia coli O157/efectos de los fármacos , Aditivos Alimentarios/farmacología , Carne/microbiología , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Toxinas Shiga/genética , Animales , Bovinos , Recuento de Colonia Microbiana , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Toxinas Shiga/metabolismo
5.
Curr Opin Clin Nutr Metab Care ; 18(4): 328-33, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26001651

RESUMEN

PURPOSE OF REVIEW: Nutrients or even diets affect the epigenome by lifelong remodeling. Nutritional imbalances are associated with noncommunicable diseases. Thus, nutriepigenomics is a promising field in the treatment of complex human diseases. RECENT FINDINGS: The epigenome is susceptible to changes and can be shaped by nutritional states, especially in prenatal period through transgenerational mechanisms and in early postnatal life when critical developmental processes are taking place. Although more stable, the epigenetic marks in adulthood are also dynamic and modifiable by environmental factors including diet. SUMMARY: The present review is focused on the most recent knowledge of epigenetically active nutrients/diets including transgenerational inheritance and prenatal predispositions related to increased risk for cancer, metabolic syndrome, and neurodegenerative diseases.


Asunto(s)
Epigenómica/métodos , Conducta Alimentaria , Nutrigenómica/métodos , Estado Nutricional , Dieta , Femenino , Regulación de la Expresión Génica , Marcadores Genéticos , Humanos , Estilo de Vida , Desnutrición/dietoterapia , Desnutrición/genética , Fenómenos Fisiologicos Nutricionales Maternos , Síndrome Metabólico/dietoterapia , Síndrome Metabólico/genética , Síndrome Metabólico/prevención & control , Atención Posnatal , Atención Prenatal
6.
Int J Mol Sci ; 15(11): 19898-923, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25365178

RESUMEN

Genetic mutations must be avoided during the production and use of seeds. In the European Union (EU), Directive 2001/18/EC requires any DNA construct introduced via transformation to be stable. Establishing genetic stability is critical for the approval of genetically modified organisms (GMOs). In this study, genetic stability of two GMOs was examined using high resolution melting (HRM) analysis and real-time polymerase chain reaction (PCR) employing Scorpion primers for amplification. The genetic variability of the transgenic insert and that of the flanking regions in a single oilseed rape variety (GT73) and a stacked maize (MON88017×MON810) was studied. The GT73 and the 5' region of MON810 showed no instabilities in the examined regions. However; two out of 100 analyzed samples carried a heterozygous point mutation in the 3' region of MON810 in the stacked variety. These results were verified by direct sequencing of the amplified PCR products as well as by sequencing of cloned PCR fragments. The occurrence of the mutation suggests that the 5' region is more suitable than the 3' region for the quantification of MON810. The identification of the single nucleotide polymorphism (SNP) in a stacked event is in contrast to the results of earlier studies of the same MON810 region in a single event where no DNA polymorphism was found.


Asunto(s)
ADN de Plantas/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa , Zea mays/genética , Regiones no Traducidas 3' , Secuencia de Bases , Datos de Secuencia Molecular , Desnaturalización de Ácido Nucleico , Hojas de la Planta/genética , Plantas Modificadas Genéticamente/genética , Plásmidos/química , Plásmidos/metabolismo , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
7.
Life (Basel) ; 14(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38541714

RESUMEN

The importance of diet and lifestyle in maintaining overall health has long been recognised. MicroRNAs (miRNAs) have emerged as key players in the intricate interplay between health and disease. This study, including 305 participants, examined the role of miRNAs from capillary blood as indicators of individual physiological characteristics, diet, and lifestyle influences. Key findings include specific miRNAs associated with inflammatory processes and dietary patterns. Notably, miR-155 was associated with subjects with metabolic diseases and upregulated in age. Additionally, the study revealed diet-related miRNA expressions: high consumption of vegetables, fruits, and whole grains correlated with increased levels of miR-let-7a and miR-328, both implicated in anti-inflammatory pathways, and decreased expression of pro-inflammatory miR-21. In the context of smoking, we found a significant decrease in miRNA-142, known for its downregulation in lung cancer. We observed a sex-biased expression of various miRNAs with significant upregulation of miR-151a in females and a higher expression of miR-155 in ageing females, representing a possible mechanism for the increased susceptibility to autoimmune diseases. In conclusion, the study underscores the significant influence of lifestyle, nutrition, and sex on miRNA profiles. Circulating miRNAs demonstrate significant potential as biomarkers in personalized medicine, highlighting their utility in tailoring healthcare to individual needs.

8.
Epigenomes ; 7(1)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36648863

RESUMEN

Dysregulation of epigenetic mechanisms has been recognized to play a crucial role in cancer development, but these mechanisms vary between sexes. Therefore, we focused on sex-specific differences in the context of cancer-based data from a recent study. A total of 12 cell-free DNA methylation targets in CpG-rich promoter regions and 48 miRNAs were analyzed by qPCR in plasma samples from 8 female and 7 male healthy controls as well as 48 female and 80 male subjects with solid tumors of the bladder, brain, colorectal region (CRC), lung, stomach, pancreas, and liver. Due to the small sample size in some groups and/or the non-balanced distribution of men and women, sex-specific differences were evaluated statistically only in healthy subjects, CRC, stomach or pancreas cancer patients, and all cancer subjects combined (n female/male-8/7, 14/14, 8/15, 6/6, 48/80, respectively). Several miRNAs with opposing expressions between the sexes were observed for healthy subjects (miR-17-5p, miR-26b-5p); CRC patients (miR-186-5p, miR-22-3p, miR-22-5p, miR-25-3p, miR-92a-3p, miR-16-5p); stomach cancer patients (miR-133a-3p, miR-22-5p); and all cancer patients combined (miR-126-3p, miR-21-5p, miR-92a-3p, miR-183-5p). Moreover, sex-specific correlations that were dependent on cancer stage were observed in women (miR-27a-3p) and men (miR-17-5p, miR-20a-5p). Our results indicate the complex and distinct role of epigenetic regulation, particularly miRNAs, depending not only on the health status but also on the sex of the patient. The same miRNAs could have diverse effects in different tissues and opposing effects between the biological sexes, which should be considered in biomarker research.

9.
Cancers (Basel) ; 14(2)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35053623

RESUMEN

Liquid biopsy-based tests emerge progressively as an important tool for cancer diagnostics and management. Currently, researchers focus on a single biomarker type and one tumor entity. This study aimed to create a multi-analyte liquid biopsy test for the simultaneous detection of several solid cancers. For this purpose, we analyzed cell-free DNA (cfDNA) mutations and methylation, as well as circulating miRNAs (miRNAs) in plasma samples from 97 patients with cancer (20 bladder, 9 brain, 30 breast, 28 colorectal, 29 lung, 19 ovarian, 12 pancreas, 27 prostate, 23 stomach) and 15 healthy controls via real-time qPCR. Androgen receptor p.H875Y mutation (AR) was detected for the first time in bladder, lung, stomach, ovarian, brain, and pancreas cancer, all together in 51.3% of all cancer samples and in none of the healthy controls. A discriminant function model, comprising cfDNA mutations (COSM10758, COSM18561), cfDNA methylation markers (MLH1, MDR1, GATA5, SFN) and miRNAs (miR-17-5p, miR-20a-5p, miR-21-5p, miR-26a-5p, miR-27a-3p, miR-29c-3p, miR-92a-3p, miR-101-3p, miR-133a-3p, miR-148b-3p, miR-155-5p, miR-195-5p) could further classify healthy and tumor samples with 95.4% accuracy, 97.9% sensitivity, 80% specificity. This multi-analyte liquid biopsy-based test may help improve the simultaneous detection of several cancer types and underlines the importance of combining genetic and epigenetic biomarkers.

10.
Sports (Basel) ; 10(5)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35622482

RESUMEN

Healthy mitochondria and their epigenetic control are essential to maintaining health, extending life expectancy, and improving cardiovascular performance. Strategies to maintain functional mitochondria during aging include training; cardiovascular exercise has been suggested as the best method, but strength training has also been identified as essential to health and healthy aging. We therefore investigated the effects of concurrent exercise training and dietary habits on epigenetic mechanisms involved in mitochondrial (mt) functions and biogenesis. We analyzed epigenetic biomarkers that directly target the key regulator of mitochondrial biogenesis, PGC-1α, and mtDNA content. Thirty-six healthy, sedentary participants completed a 12-week concurrent training program. Before and after the intervention, dried blood spot samples and data on eating habits, lifestyle, and body composition were collected. MiR-23a, miR-30e expression, and mtDNA content were analyzed using real-time quantitative polymerase chain reaction (qPCR) analysis. PGC-1α methylation was analyzed using bisulfite pyrosequencing. MiR-23a, miR-30e expression, and PGC-1α methylation decreased after the intervention (p < 0.05). PGC-1α methylation increased with the consumption of red and processed meat, and mtDNA content increased with the ingestion of cruciferous vegetables (p < 0.05). Our results indicate that concurrent training could improve mitochondrial biogenesis and functions by altering the epigenetic regulation. These alterations can also be detected outside of the skeletal muscle and could potentially affect athletic performance.

11.
J Int Soc Sports Nutr ; 19(1): 455-473, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937778

RESUMEN

Background: Regular, especially sustained exercise plays an important role in the prevention and treatment of multiple chronic diseases. Some of the underlying molecular and cellular mechanisms behind the adaptive response to physical activity are still unclear, but recent findings suggest a possible role of epigenetic mechanisms, especially miRNAs, in the progression and management of exercise-related changes. Due to the combination of the analysis of epigenetic biomarkers (miRNAs), the intake of food and supplements, and genetic dispositions, a "fitness score" was evaluated to assess the individual response to nutrition, exercise, and metabolic influence. Methods: In response to a 12-week sports intervention, we analyzed genetic and epigenetic biomarkers in capillary blood from 61 sedentary, healthy participants (66.1% females, 33.9% males, mean age 33 years), including Line-1 methylation, three SNPs, and ten miRNAs using HRM and qPCR analysis. These biomarkers were also analyzed in a healthy, age- and sex-matched control group (n, 20) without intervention. Food frequency intake, including dietary supplement intake, and general health questionnaires were surveyed under the supervision of trained staff. Results: Exercise training decreased the expression of miR-20a-5p, -22-5p, and -505-3p (p < 0.02) and improved the "fitness score," which estimates eight different lifestyle factors to assess, nutrition, inflammation, cardiovascular fitness, injury risk, regeneration, muscle and hydration status, as well as stress level. In addition, we were able to determine correlations between individual miRNAs, miR-20a-5p, -22-5p, and -101-3p (p < 0.04), and the genetic predisposition for endurance and/or strength and obesity risk (ACE, ACTN3, and FTO), as well as between miRNAs and the body composition (p < 0.05). MiR-19b-3p and -101-3p correlated with the intake of B vitamins. Further, miR-19b-3p correlated with magnesium and miR-378a-3p with iron intake (p < 0.05). Conclusions: In summary, our results indicate that a combined analysis of several biomarkers (miRNAs) can provide information about an individual's training adaptions/fitness, body composition, nutritional needs, and possible recovery. In contrast to most studies using muscle biopsies, we were able to show that these biomarkers can also be measured using a minimally invasive method.


Asunto(s)
MicroARNs , Actinina/metabolismo , Adulto , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Biomarcadores , Composición Corporal , Dieta , Ejercicio Físico/fisiología , Femenino , Humanos , Masculino , MicroARNs/genética
12.
Ann Nutr Metab ; 57(3-4): 183-9, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21088384

RESUMEN

BACKGROUND: The tumor suppressor genes p15(INK)4(b) and p16(INK)4(a) as well as the estrogen receptor-α (ESR1) gene are abnormally methylated and expressed in colon cancer. The cancer-preventative abilities of several bioactive food components have been linked to their estrogenic and epigenetic activities. METHODS: The effect of folic acid, zebularine, resveratrol, genistein and epigallocatechin-3-gallate (EGCG) on tumor cell growth, promoter methylation of ESR1, p15(INK)4(b) and p16(INK)4(a) and gene expression of ESR1 and ESR2 was analyzed in Caco-2 cells. Gene expression was measured using real-time PCR, and promoter CpG methylation was assessed using bisulfite conversion and methylation-specific PCR. RESULTS: After exposure to a high concentration of folic acid (20 µmol/l), enhanced cancer cell growth and concomitant increased methylation of the ESR1 (3.6-fold), p16(INK)4(a) and p15(INK)4(b) promoters was observed. A lower concentration of folic acid (2 µmol/l) decreased cell growth. The phytoestrogens genistein and resveratrol enhanced expression of ESR1 (genistein 200 µmol/l: 2.1-fold; resveratrol 50 µmol/l: 6.3-fold) and ESR2 (2.6- and 3.6-fold, respectively). Genistein and resveratrol treatment increased promoter methylation of ESR1 (genistein 200 µmol/l: 2.9-fold; resveratrol 50 µmol/l: 1.4-fold). For p16(INK)4(a), increased methylation was found after exposure to 10 µmol/l resveratrol, but for p15(INK)4(b), decreased methylation was found. Both components showed growth-inhibitory activities. For EGCG, growth inhibition at 100 µmol/l and suppressed promoter methylation of tumor suppressor genes (p16(INK)4(a): 0.9-fold; p15(INK)4(b): 0.6-fold) was seen. CONCLUSIONS: Our results show that these food compounds regulate ESR and tumor suppressor gene expression by multiple mechanisms including epigenetic processes. An improved understanding of these epigenetic effects could therefore support specific dietary concepts of epigenetic cancer prevention and intervention.


Asunto(s)
Neoplasias del Colon/genética , Dieta , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Receptores de Estrógenos/metabolismo , Células CACO-2 , Neoplasias del Colon/metabolismo , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Metilación de ADN , Epigénesis Genética , Ácido Fólico/metabolismo , Humanos , Reacción en Cadena de la Polimerasa , Proteínas Supresoras de Tumor/genética
13.
Br J Nutr ; 101(5): 743-9, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18684339

RESUMEN

The impact of nutrition on the epigenetic machinery has increasingly attracted interest. The aim of the present study was to demonstrate the effects of various diets on methylation and gene expression. The antioxidative enzyme mitochondrial superoxide dismutase (MnSOD) was chosen as the model system because epigenetic regulation has been previously shown in cell lines for this gene. Promoter methylation and gene expression of MnSOD in buccal swabs from three sample groups were analysed. The three groups included: (1) forty vegetarians (aged 20-30 years); (2) age-matched omnivores; (3) elderly omnivores (aged>85 years). A 3-fold increase in the expression of the MnSOD gene was associated with decreased CpG methylation of the analysed promoter region in the vegetarian group compared with the age-matched omnivores group. Expression and promoter methylation of the MnSOD gene in elderly omnivores showed no significant differences compared with younger omnivores. In accordance with previous findings in various tissues, DNA global methylation was found to be significantly higher (30 %) in buccal swabs of younger subjects (independent of the diet), than in those of elderly omnivores. In the control experiment which was designed to verify the findings of the human buccal swab studies, the Caco-2 cell line was treated with zebularine. Results of the control study showed a 6-fold increase of MnSOD expression, an approximately 40 % decreased methylation of specified CpG in the MnSOD promoter and a 50 % reduction of global DNA methylation. These results indicate that diet affects the epigenetic regulation of human MnSOD.


Asunto(s)
Dieta , Epigénesis Genética/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Mucosa Bucal/enzimología , Superóxido Dismutasa/metabolismo , Adulto , Anciano de 80 o más Años , Envejecimiento/metabolismo , Células CACO-2 , Mejilla , Islas de CpG , Citidina/análogos & derivados , Citidina/farmacología , Metilación de ADN , Dieta Vegetariana , Inhibidores Enzimáticos/farmacología , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/fisiología , Mitocondrias/enzimología , Superóxido Dismutasa/genética , Telomerasa/metabolismo , Adulto Joven
14.
Ann Nutr Metab ; 54(4): 253-7, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19641302

RESUMEN

BACKGROUND/AIMS: This study aimed to investigate the quantitative and qualitative changes of bacteria, Bacteroides, Bifidobacterium and Clostridium cluster IV in faecal microbiota associated with a vegetarian diet. METHODS: Bacterial abundances were measured in faecal samples of 15 vegetarians and 14 omnivores using quantitative PCR. Diversity was assessed with PCR-DGGE fingerprinting, principal component analysis (PCA) and Shannon diversity index. RESULTS: Vegetarians had a 12% higher abundance of bacterial DNA than omnivores, a tendency for less Clostridium cluster IV (31.86 +/- 17.00%; 36.64 +/- 14.22%) and higher abundance of Bacteroides (23.93 +/- 10.35%; 21.26 +/- 8.05%), which were not significant due to high interindividual variations. PCA suggested a grouping of bacteria and members of Clostridium cluster IV. Two bands appeared significantly more frequently in omnivores than in vegetarians (p < 0.005 and p < 0.022). One was identified as Faecalibacterium sp. and the other was 97.9% similar to the uncultured gut bacteriumDQ793301. CONCLUSIONS: A vegetarian diet affects the intestinal microbiota, especially by decreasing the amount and changing the diversity of Clostridium cluster IV. It remains to be determined how these shifts might affect the host metabolism and disease risks.


Asunto(s)
Bacteroides/aislamiento & purificación , Bifidobacterium/aislamiento & purificación , Clostridium/aislamiento & purificación , Dieta Vegetariana , Heces/microbiología , Adulto , Bacteroides/genética , Bacteroides/metabolismo , Bacteroides/fisiología , Bifidobacterium/genética , Bifidobacterium/metabolismo , Bifidobacterium/fisiología , Clostridium/genética , Clostridium/metabolismo , Clostridium/fisiología , Recuento de Colonia Microbiana , Dermatoglifia del ADN , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Electroforesis , Variación Genética , Humanos , Reacción en Cadena de la Polimerasa , Análisis de Componente Principal , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Encuestas y Cuestionarios , Adulto Joven
15.
Oxid Med Cell Longev ; 2018: 3734250, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29854080

RESUMEN

Obesity- or diabetes-induced oxidative stress is discussed as a major risk factor for DNA damage. Vitamin E and many polyphenols exhibit antioxidative activities with consequences on epigenetic regulation of inflammation and DNA repair. The present study investigated the counteraction of oxidative stress by vitamin E in the colorectal cancer cell line Caco-2 under normal (1 g/l) and high (4.5 g/l) glucose cell culture condition. Malondialdehyde (MDA) as a surrogate marker of lipid peroxidation and reactive oxygen species (ROS) was analyzed. Gene expression and promoter methylation of the DNA repair gene MutL homolog 1 (MLH1) and the DNA methyltransferase 1 (DNMT1) as well as global methylation by LINE-1 were investigated. Results revealed a dose-dependent counteracting effect of vitamin E on H2O2-induced oxidative stress. Thereby, 10 µM vitamin E proved to be more efficient than did 50 µM in reducing MDA. Further, an induction of MLH1 and DNMT1 gene expression was noticed, accompanied by an increase in global methylation. Whether LINE-1 hypomethylation is a cause or effect of oxidative stress is still unclear. In conclusion, supplementation of exogenous antioxidants like vitamin E in vitro exhibits beneficial effects concerning oxidative stress as well as epigenetic regulation involved in DNA repair.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/efectos de los fármacos , Homólogo 1 de la Proteína MutL/genética , Estrés Oxidativo/efectos de los fármacos , Vitamina E/farmacología , Células CACO-2 , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/biosíntesis , Relación Dosis-Respuesta a Droga , Epigénesis Genética/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucosa/administración & dosificación , Glucosa/metabolismo , Humanos , Elementos de Nucleótido Esparcido Largo , Homólogo 1 de la Proteína MutL/biosíntesis , Estrés Oxidativo/genética , Regiones Promotoras Genéticas , Especies Reactivas de Oxígeno/metabolismo
16.
Mol Aspects Med ; 54: 71-77, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27670623

RESUMEN

Dietary habits, lifestyle, medication, and food additives affect the composition and functions of the GI microbiota. Metabolic syndrome is already known to be associated with an aberrant gut microbiota affecting systemic low-grade inflammation, which is also outlined by differing epigenetic patterns. Thus, structural changes and compositional evaluation of gut microbial differences affecting epigenetic patterns in metabolic syndrome are of research interest. In the present review we focus on the disparities in the gut microbiota composition of metabolic syndrome and the resulting aberrant profile of bioactive microbial metabolites known to affect epigenetic modifications such as G-protein coupled receptors and inflammatory pathways.


Asunto(s)
Epigénesis Genética , Microbioma Gastrointestinal/genética , Síndrome Metabólico/genética , Síndrome Metabólico/microbiología , Animales , Humanos , Metaboloma , Modelos Biológicos , Receptores Toll-Like/metabolismo
17.
Oxid Med Cell Longev ; 2017: 3079148, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28133504

RESUMEN

Obesity as a multifactorial disorder involves low-grade inflammation, increased reactive oxygen species incidence, gut microbiota aberrations, and epigenetic consequences. Thus, prevention and therapies with epigenetic active antioxidants, (-)-Epigallocatechin-3-gallate (EGCG), are of increasing interest. DNA damage, DNA methylation and gene expression of DNA methyltransferase 1, interleukin 6, and MutL homologue 1 were analyzed in C57BL/6J male mice fed a high-fat diet (HFD) or a control diet (CD) with and without EGCG supplementation. Gut microbiota was analyzed with quantitative real-time polymerase chain reaction. An induction of DNA damage was observed, as a consequence of HFD-feeding, whereas EGCG supplementation decreased DNA damage. HFD-feeding induced a higher inflammatory status. Supplementation reversed these effects, resulting in tissue specific gene expression and methylation patterns of DNA methyltransferase 1 and MutL homologue 1. HFD feeding caused a significant lower bacterial abundance. The Firmicutes/Bacteroidetes ratio is significantly lower in HFD + EGCG but higher in CD + EGCG compared to control groups. The results demonstrate the impact of EGCG on the one hand on gut microbiota which together with dietary components affects host health. On the other hand effects may derive from antioxidative activities as well as epigenetic modifications observed on CpG methylation but also likely to include other epigenetic elements.


Asunto(s)
Antioxidantes/farmacología , Catequina/análogos & derivados , Metilación de ADN/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Animales , Catequina/farmacología , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , Daño del ADN/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Homólogo 1 de la Proteína MutL/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
J Agric Food Chem ; 54(9): 3173-80, 2006 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-16637668

RESUMEN

Evidence for substantial environmental influences on health and food safety comes from work with environmental health indicators which show that agroenvironmental practices have direct and indirect effects on human health, concluding that "the quality of the environment influences the quality and safety of foods" [Fennema, O. Environ. Health Perspect. 1990, 86, 229-232). In the field of genetically modified organisms (GMOs), Codex principles have been established for the assessment of GM food safety and the Cartagena Protocol on Biosafety outlines international principles for an environmental assessment of living modified organisms. Both concepts also contain starting points for an assessment of health/food safety effects of GMOs in cases when the environment is involved in the chain of events that could lead to hazards. The environment can act as a route of unintentional entry of GMOs into the food supply, such as in the case of gene flow via pollen or seeds from GM crops, but the environment can also be involved in changes of GMO-induced agricultural practices with relevance for health/food safety. Examples for this include potential regional changes of pesticide uses and reduction in pesticide poisonings resulting from the use of Bt crops or influences on immune responses via cross-reactivity. Clearly, modern methods of biotechnology in breeding are involved in the reasons behind the rapid reduction of local varieties in agrodiversity, which constitute an identified hazard for food safety and food security. The health/food safety assessment of GM foods in cases when the environment is involved needs to be informed by data from environmental assessment. Such data might be especially important for hazard identification and exposure assessment. International organizations working in these areas will very likely be needed to initiate and enable cooperation between those institutions responsible for the different assessments, as well as for exchange and analysis of information. An integrated assessment might help to focus and save capacities in highly technical areas such as molecular characterization or profiling, which are often necessary for both assessments. In the area of establishing international standards for traded foods, such as for the newly created Standards in Trade and Development Facility (STDF), an integrated assessment might help in the consideration of important environmental aspects involved in health and food safety. Furthermore, an established integrated view on GMOs may create greater consumer confidence in the technology.


Asunto(s)
Ambiente , Alimentos Modificados Genéticamente , Alimentos , Seguridad , Alimentos Modificados Genéticamente/efectos adversos , Humanos , Inmunidad , Plantas Modificadas Genéticamente/efectos adversos , Medición de Riesgo
19.
J Microbiol Methods ; 123: 94-100, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26883620

RESUMEN

To ensure quality management during the production processes of probiotics and for efficacy testing in vivo, accurate tools are needed for the identification and quantification of probiotic strains. In this study, a strain-specific qPCR assay based on Suppression Subtractive Hybridisation (SSH) for identifying unique sequences, was developed to quantify the strain Bifidobacterium animalis BAN in broiler feed. Seventy potential BAN specific sequences were obtained after SSH of the BAN genome, with a pool of closely related strain genomes and subsequent differential screening by dot blot hybridisation. Primers were designed for 30 sequences which showed no match with any sequence database entry, using BLAST and FASTA. Primer specificity was assessed by qPCR using 45 non-target strains and species in a stepwise approach. Primer T39_S2 was the only primer pair without any unspecific binding properties and it showed a PCR efficiency of 80% with a Cq value of 17.32 for 20 ng BAN DNA. Optimised feed-matrix dependent calibration curve for the quantification of BAN was generated, ranging from 6.28 × 10(3)cfu g(-1) to 1.61 × 10(6)cfu g(-1). Limit of detection of the qPCR assay was 2 × 10(1)cfu g(-1) BAN. Applicability of the strain-specific qPCR assay was confirmed in a spiking experiment which added BAN to the feed in two concentrations, 2 × 10(6)cfu g(-1) and 2 × 10(4)cfu g(-1). Results showed BAN mean recovery rates in feed of 1.44 × 10(6) ± 4.39 × 10(5)cfu g(-1) and 1.59 × 10(4) ± 1.69 × 10(4)cfu g(-1), respectively. The presented BAN-specific qPCR assay can be applied in animal feeding trials, in order to control the correct inclusion rates of the probiotic to the feed, and it could further be adapted, to monitor the uptake of the probiotic into the gastrointestinal tract of broiler chickens.


Asunto(s)
Alimentación Animal/microbiología , Bifidobacterium animalis/aislamiento & purificación , Probióticos/química , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Técnicas de Hibridación Sustractiva/métodos , Alimentación Animal/análisis , Animales , Bifidobacterium animalis/genética , Bifidobacterium animalis/crecimiento & desarrollo , Pollos , Cartilla de ADN/genética , Especificidad de la Especie
20.
Artículo en Inglés | MEDLINE | ID: mdl-27577947

RESUMEN

BACKGROUND: Beside the influence of nutritional habits and reduced physical activity, metabolic syndrome is associated with alterations in the structure of gut microbiota influencing the inflammatory immune responses. Gut microbiota and microbial metabolic activities are known to affect the lipid and glucose metabolism, satiety and chronic low-grade inflammation in the metabolic syndrome. The aim of the study was to identify genera or even species affecting host metabolism in obesity and type 2 diabetes beside the common used indicator: Firmicutes/ Bacteroidetes ratio. METHODS: Differences in gut microbiota were investigated in three groups of subjects over a four month intervention period: type 2 diabetics under GLP1-Agonist therapy, obese individuals without established insulin resistance, both receiving nutritional counseling concerning weight reduction, and a lean control group. Collection of fecal samples was accomplished at two time points, before treatment, and after four months of treatment. For identification of bacteria at species-level we used 454 high-throughput sequencing and fragment length polymorphism analysis based on IS-pro (Intergenic-Spacer-profiling). Five bacterial species, two bacterial genera, total bacterial abundance, and the Firmicutes/Bacteroidetes ratio were determined. RESULTS: Type 2 diabetics showed a higher Firmicutes/Bacteroidetes ratio even with an increase to the second time point (p=0.07). The abundance of B. thetaiotaomicron remained unaffected, whereas B. vulgatus significantly increased in type 2 diabetics (p=0.07) over the study period. Either Alistipes spp. showed an increase in type 2 diabetics between the time points (p=0.06). The abundance of F. prausnitzii (p=0.03) and A. muciniphila (p=0.03) also increased in type 2 diabetics over study period. In addition, the concentration of P. anaerobius (p=0.03) was significantly higher in type 2 diabetics after intervention compared to lean and obese controls. CONCLUSION: Our results clearly show a difference in the gut bacterial composition in type 2 diabetics compared to lean controls or obesity. Therefore, the ratio of Fimicutes/Bacteroidetes might only be an indicator, but a detailed view at species level is even more important in regard to distinction of their functions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA