Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Heliyon ; 10(4): e26633, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38404854

RESUMEN

The present study serves experimental and theoretical analyses in developing a hybrid advanced structure as a photolysis, which is based on electrospun Graphene Oxide-titanium dioxide (GO-TiO2) nanofibers as an electron transfer material (ETMs) functionalized for perovskite solar cell (PVSCs) with GO. The prepared ETMs were utilized for the synthesis of mixed-cation (FAPbI3)0.8(MAPbBr3)0.2. The effect of GO on TiO2 and their chemical structure, electronic and morphological characteristic were investigated and discussed. The elaborated device, namely ITO/Bl-TiO2/3 wt% GO-TiO2/(FAPbI3)0.8(MAPbBr3)0.2/spiro-MeTAD/Pt, displayed 20.14% disposition and conversion solar energy with fill factor (FF) of 1.176%, short circuit current density (Jsc) of 20.56 mA/cm2 and open circuit voltage (VOC) 0.912 V. The obtained efficiency is higher than titanium oxide (18.42%) and other prepared GO-TiO2 composite nanofibers based ETMs. The developed materials and device would facilitate elaboration of advanced functional materials and devices for energy storage applications.

2.
J Drug Target ; 31(7): 714-724, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37461888

RESUMEN

Bone morphogenetic protein (BMP)-9 is considered a member of the transforming growth factor (TGF)ß superfamily. It was first found as an inducer of bone and cartilage formation and then discovered that this factor mediates several physiologic functions and hemostasis. Besides physiological conditions, BMP9 has also been elucidated that it is involved in several pathological situations, especially cancer. In various cancers, dysregulation of BMP9 has raised the issue that BMP9 might play a conflicting role in tumour development. BMP9 binding to its receptors (BMPRs), including ALKs and BMPRII, induces canonical SMAD-dependent and non-canonical PI3K/AKT and MAPK signalling pathways in tumour cells. BMP9, via inducing apoptosis, inhibiting tumour-promoting cell signalling pathways, suppressing epithelial-mesenchymal transition (EMT) process, blocking angiogenesis, and preventing cross-talk in the tumour microenvironment, mainly exerts tumour-suppressive functions. In contrast, BMP9 triggers tumour-supportive signalling pathways, promotes EMT, and enhances angiogenesis, suggesting that BMP9 is also involved in tumour development. It has been demonstrated that modulating BMP9 expression and functions might be a promising approach to cancer treatment. It has also been indicated that evaluating BMP9 expression in cancers might be a biomarker for predicting cancer prognosis. Overall, BMP9 would provide a promising target in cancer management.


Asunto(s)
Factor 2 de Diferenciación de Crecimiento , Neoplasias , Humanos , Factor 2 de Diferenciación de Crecimiento/metabolismo , Factor 2 de Diferenciación de Crecimiento/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Morfogenéticas Óseas , Transducción de Señal , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Factor de Crecimiento Transformador beta , Microambiente Tumoral
3.
Artículo en Inglés | MEDLINE | ID: mdl-37847195

RESUMEN

We scrutinized the impact of doping of X atoms (X = Fe, Co, Ni, Cu, and Zn) on the metformin (MF) drug delivery performance of a BP nanotube (BPNT) using density functional B3LYP calculations. The pristine BPNT was not ideal for the drug delivery of MF because of a weak interaction between the drug and nanotube. Doping of the Zn, Cu, Ni, Co, and Fe into the BPNT surface raised the adsorption energy of MF from -5.3 to -29.1, -28.7, -29.8, -32.1, and -26.9 kcal/mol, respectively, demonstrating that the sensitiveness of the metal-doped BPNT increased after increasing the radius atomic of metals. Ultimately, there was an increase in the adhesion performance and capacity of the MF after X (especially Co atom) doping, making the nanotube suitable for MF drug delivery. The mechanism of MF reaction with the BPNT changed from covalent bonding in the natural environment to hydrogen bonding in the cancerous cells with high acidity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA