Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Handb Exp Pharmacol ; 283: 181-218, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37468723

RESUMEN

Volume-regulated anion channels (VRACs) and the acid-sensitive outwardly rectifying anion channel (ASOR) mediate flux of chloride and small organic anions. Although known for a long time, they were only recently identified at the molecular level. VRACs are heteromers consisting of LRRC8 proteins A to E. Combining the essential LRRC8A with different LRRC8 paralogues changes key properties of VRAC such as conductance or substrate selectivity, which is how VRACs are involved in multiple physiological functions including regulatory volume decrease, cell proliferation and migration, cell death, purinergic signalling, fat and glucose metabolism, insulin signalling, and spermiogenesis. VRACs are also involved in pathological conditions, such as the neurotoxic release of glutamate and aspartate. Certain VRACs are also permeable to larger, organic anions, including antibiotics and anti-cancer drugs, making them an interesting therapeutic target. ASOR, also named proton-activated chloride channel (PAC), is formed by TMEM206 homotrimers on the plasma membrane and on endosomal compartments where it mediates chloride flux in response to extracytosolic acidification and plays a role in the shrinking and maturation of macropinosomes. ASOR has been shown to underlie neuronal swelling which causes cell death after stroke as well as promoting the metastasis of certain cancers, making them intriguing therapeutic targets as well.


Asunto(s)
Canales de Cloruro , Cloruros , Humanos , Cloruros/metabolismo , Protones , Proteínas de la Membrana , Aniones/metabolismo
2.
Mol Psychiatry ; 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36450866

RESUMEN

Postsynaptic scaffold proteins such as Shank, PSD-95, Homer and SAPAP/GKAP family members establish the postsynaptic density of glutamatergic synapses through a dense network of molecular interactions. Mutations in SHANK genes are associated with neurodevelopmental disorders including autism and intellectual disability. However, no SHANK missense mutations have been described which interfere with the key functions of Shank proteins believed to be central for synapse formation, such as GKAP binding via the PDZ domain, or Zn2+-dependent multimerization of the SAM domain. We identify two individuals with a neurodevelopmental disorder carrying de novo missense mutations in SHANK2. The p.G643R variant distorts the binding pocket for GKAP in the Shank2 PDZ domain and prevents interaction with Thr(-2) in the canonical PDZ ligand motif of GKAP. The p.L1800W variant severely delays the kinetics of Zn2+-dependent polymerization of the Shank2-SAM domain. Structural analysis shows that Trp1800 dislodges one histidine crucial for Zn2+ binding. The resulting conformational changes block the stacking of helical polymers of SAM domains into sheets through side-by-side contacts, which is a hallmark of Shank proteins, thereby disrupting the highly cooperative assembly process induced by Zn2+. Both variants reduce the postsynaptic targeting of Shank2 in primary cultured neurons and alter glutamatergic synaptic transmission. Super-resolution microscopy shows that both mutants interfere with the formation of postsynaptic nanoclusters. Our data indicate that both the PDZ- and the SAM-mediated interactions of Shank2 contribute to the compaction of postsynaptic protein complexes into nanoclusters, and that deficiencies in this process interfere with normal brain development in humans.

3.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-34948411

RESUMEN

Investigations on ion channels in muscle tissues have mainly focused on physiological muscle function and related disorders, but emerging evidence supports a critical role of ion channels and transporters in developmental processes, such as controlling the myogenic commitment of stem cells. In this review, we provide an overview of ion channels and transporters that influence skeletal muscle myoblast differentiation, cardiac differentiation from pluripotent stem cells, as well as vascular smooth muscle cell differentiation. We highlight examples of model organisms or patients with mutations in ion channels. Furthermore, a potential underlying molecular mechanism involving hyperpolarization of the resting membrane potential and a series of calcium signaling is discussed.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Desarrollo de Músculos , Mioblastos/citología , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología , Animales , Diferenciación Celular , Humanos , Canales Iónicos/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Músculo Liso Vascular/citología , Músculo Liso Vascular/fisiología , Mioblastos/metabolismo , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/metabolismo
4.
J Neurochem ; 155(3): 250-263, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32202324

RESUMEN

Mutations in SHANK3, coding for a large scaffold protein of excitatory synapses in the CNS, are associated with neurodevelopmental disorders including autism spectrum disorders and intellectual disability (ID). Several cases have been identified in which the mutation leads to truncation of the protein, eliminating C-terminal sequences required for post-synaptic targeting of the protein. We identify here a patient with a truncating mutation in SHANK3, affected by severe global developmental delay and intellectual disability. By analyzing the subcellular distribution of this truncated form of Shank3, we identified a nuclear localization signal (NLS) in the N-terminal part of the protein which is responsible for targeting Shank3 fragments to the nucleus. To determine the relevance of Shank3 for nuclear signaling, we analyze how it affects signaling by ß-catenin, a component of the Wnt pathway. We show that full length as well as truncated variants of Shank3 interact with ß-catenin via the PDZ domain of Shank3, and the armadillo repeats of ß-catenin. As a result of this interaction, truncated forms of Shank3 and ß-catenin strictly co-localize in small intra-nuclear bodies both in 293T cells and in rat hippocampal neurons. On a functional level, the sequestration of both proteins in these nuclear bodies is associated with a strongly repressed transcriptional activation by ß-catenin owing to interaction with the truncated Shank3 fragment found in patients. Our data suggest that truncating mutations in SHANK3 may not only lead to a reduction in Shank3 protein available at postsynaptic sites but also negatively affect the Wnt signaling pathway.


Asunto(s)
Núcleo Celular/metabolismo , Discapacidades del Desarrollo/metabolismo , Mutación/fisiología , Proteínas del Tejido Nervioso/metabolismo , beta Catenina/metabolismo , Animales , Núcleo Celular/genética , Células Cultivadas , Discapacidades del Desarrollo/genética , Femenino , Células HEK293 , Humanos , Masculino , Proteínas del Tejido Nervioso/genética , Embarazo , Ratas , Ratas Wistar , Transducción de Señal/fisiología
5.
Mol Neurobiol ; 61(2): 693-706, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37656313

RESUMEN

Members of the Shank family of postsynaptic scaffold proteins (Shank1-3) link neurotransmitter receptors to the actin cytoskeleton in dendritic spines through establishing numerous interactions within the postsynaptic density (PSD) of excitatory synapses. Large Shank isoforms carry at their N-termini a highly conserved domain termed the Shank/ProSAP N-terminal (SPN) domain, followed by a set of Ankyrin repeats. Both domains are involved in an intramolecular interaction which is believed to regulate accessibility for additional interaction partners, such as Ras family G-proteins, αCaMKII, and cytoskeletal proteins. Here, we analyze the functional relevance of the SPN-Ank module; we show that binding of active Ras or Rap1a to the SPN domain can differentially regulate the localization of Shank3 in dendrites. In Shank1 and Shank3, the linker between the SPN and Ank domains binds to inactive αCaMKII. Due to this interaction, both Shank1 and Shank3 exert a negative effect on αCaMKII activity at postsynaptic sites in mice in vivo. The relevance of the SPN-Ank intramolecular interaction was further analyzed in primary cultured neurons; here, we observed that in the context of full-length Shank3, a closed conformation of the SPN-Ank tandem is necessary for proper clustering of Shank3 on the head of dendritic spines. Shank3 variants carrying Ank repeats which are not associated with the SPN domain lead to the atypical formation of postsynaptic clusters on dendritic shafts, at the expense of clusters in spine-like protrusions. Our data show that the SPN-Ank tandem motif contributes to the regulation of postsynaptic signaling and is also necessary for proper targeting of Shank3 to postsynaptic sites. Our data also suggest how missense variants found in autistic patients which alter SPN and Ank domains affect the synaptic function of Shank3.


Asunto(s)
Proteínas del Tejido Nervioso , Transducción de Señal , Ratones , Humanos , Animales , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de Microfilamentos/metabolismo
6.
Sci Rep ; 12(1): 902, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042901

RESUMEN

Shank proteins are major scaffolds of the postsynaptic density of excitatory synapses. Mutations in SHANK genes are associated with autism and intellectual disability. The effects of missense mutations on Shank3 function, and therefore the pathomechanisms are unclear. Several missense mutations in SHANK3 affect the N-terminal region, consisting of the Shank/ProSAP N-terminal (SPN) domain and a set of Ankyrin (Ank) repeats. Here we identify a novel SHANK3 missense mutation (p.L270M) in the Ankyrin repeats in patients with an ADHD-like phenotype. We functionally analysed this and a series of other mutations, using biochemical and biophysical techniques. We observe two major effects: (1) a loss of binding to δ-catenin (e.g. in the p.L270M variant), and (2) interference with the intramolecular interaction between N-terminal SPN domain and the Ank repeats. This also interferes with binding to the α-subunit of the calcium-/calmodulin dependent kinase II (αCaMKII), and appears to be associated with a more severe neurodevelopmental pathology.


Asunto(s)
Sinapsis
7.
Elife ; 102021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33945465

RESUMEN

Members of the SH3- and ankyrin repeat (SHANK) protein family are considered as master scaffolds of the postsynaptic density of glutamatergic synapses. Several missense mutations within the canonical SHANK3 isoform have been proposed as causative for the development of autism spectrum disorders (ASDs). However, there is a surprising paucity of data linking missense mutation-induced changes in protein structure and dynamics to the occurrence of ASD-related synaptic phenotypes. In this proof-of-principle study, we focus on two ASD-associated point mutations, both located within the same domain of SHANK3 and demonstrate that both mutant proteins indeed show distinct changes in secondary and tertiary structure as well as higher conformational fluctuations. Local and distal structural disturbances result in altered synaptic targeting and changes of protein turnover at synaptic sites in rat primary hippocampal neurons.


Asunto(s)
Trastorno Autístico/genética , Mutación Missense/genética , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Mutación Puntual , Sinapsis/fisiología , Animales , Células Cultivadas , Hipocampo/citología , Hipocampo/fisiología , Simulación de Dinámica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Prueba de Estudio Conceptual , Conformación Proteica , Ratas
8.
Curr Biol ; 31(22): 4956-4970.e9, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34610274

RESUMEN

Actin-rich cellular protrusions direct versatile biological processes from cancer cell invasion to dendritic spine development. The stability, morphology, and specific biological functions of these protrusions are regulated by crosstalk between three main signaling axes: integrins, actin regulators, and small guanosine triphosphatases (GTPases). SHANK3 is a multifunctional scaffold protein, interacting with several actin-binding proteins and a well-established autism risk gene. Recently, SHANK3 was demonstrated to sequester integrin-activating small GTPases Rap1 and R-Ras to inhibit integrin activity via its Shank/ProSAP N-terminal (SPN) domain. Here, we demonstrate that, in addition to scaffolding actin regulators and actin-binding proteins, SHANK3 interacts directly with actin through its SPN domain. Molecular simulations and targeted mutagenesis of the SPN-ankyrin repeat region (ARR) interface reveal that actin binding is inhibited by an intramolecular closed conformation of SHANK3, where the adjacent ARR domain covers the actin-binding interface of the SPN domain. Actin and Rap1 compete with each other for binding to SHANK3, and mutation of SHANK3, resulting in reduced actin binding, augments inhibition of Rap1-mediated integrin activity. This dynamic crosstalk has functional implications for cell morphology and integrin activity in cancer cells. In addition, SHANK3-actin interaction regulates dendritic spine morphology in neurons and autism-linked phenotypes in vivo.


Asunto(s)
Actinas , Fenómenos Biológicos , Actinas/metabolismo , Integrinas/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al GTP rap1/genética , Proteínas de Unión al GTP rap1/metabolismo
9.
Mol Autism ; 11(1): 85, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33115499

RESUMEN

BACKGROUND: Neurodevelopmental disorders such as autism spectrum disorder (ASD) may be caused by alterations in genes encoding proteins that are involved in synapse formation and function. This includes scaffold proteins such as Shank3, and synaptic adhesion proteins such as Neurexins or Neuroligins. An important question is whether the products of individual risk genes cooperate functionally (exemplified in the interaction of Neurexin with Neuroligin isoforms). This might suggest a common pathway in pathogenesis. For the SHANK3 gene, heterozygous loss of function, as well as missense mutations have been observed in ASD cases. Several missense mutations affect the N-terminal part of Shank3 which contains the highly conserved Shank/ProSAP N-terminal (SPN) and Ankyrin repeat (Ank) domains. The role of these domains and the relevance of these mutations for synaptic function of Shank3 are widely unknown. METHODS: We used purification from a synaptic protein fraction, as well as a variety of biochemical and cell biological approaches to identify proteins which associate with the Shank3 N-terminus at postsynaptic sites. RESULTS: We report here that δ-catenin, which is encoded by CTNND2, an autism candidate gene, directly interacts with the Ank domain of Shank3 at postsynaptic sites through its Armadillo-repeat domain. The interaction is not affected by well-known posttranslational modifications of δ-catenin, i.e. by phosphorylation or palmitoylation. However, an ASD-associated mutation in the SPN domain of Shank3, L68P, significantly increases the interaction of Shank3 with δ-catenin. By analysis of postsynaptic fractions from mice, we show that the lack of SPN-Ank containing, large isoforms of Shank3 results in the loss of postsynaptic δ-catenin. Further, expression of Shank3 variants containing the N-terminal domains in primary cultured neurons significantly increased the presence of coexpressed δ-catenin at postsynaptic sites. LIMITATIONS: Work in model organisms such as mice, and in primary cultured neurons may not reproduce faithfully the situation in human brain neurons. Work in primary cultured neurons was also hampered by lack of a specific antibody for endogenous δ-catenin. CONCLUSIONS: Our data show that the interaction between Shank3 N-terminus and δ-catenin is required for the postsynaptic targeting of δ-catenin. Failure of proper targeting of δ-catenin to postsynaptic sites may contribute to the pathogenesis of autism spectrum disorder.


Asunto(s)
Cateninas/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/metabolismo , Animales , Células HEK293 , Humanos , Ratones Noqueados , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Mutación Missense/genética , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Ratas , Catenina delta
10.
Nat Commun ; 11(1): 5797, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33199684

RESUMEN

ARGONAUTE-2 and associated miRNAs form the RNA-induced silencing complex (RISC), which targets mRNAs for translational silencing and degradation as part of the RNA interference pathway. Despite the essential nature of this process for cellular function, there is little information on the role of RISC components in human development and organ function. We identify 13 heterozygous mutations in AGO2 in 21 patients affected by disturbances in neurological development. Each of the identified single amino acid mutations result in impaired shRNA-mediated silencing. We observe either impaired RISC formation or increased binding of AGO2 to mRNA targets as mutation specific functional consequences. The latter is supported by decreased phosphorylation of a C-terminal serine cluster involved in mRNA target release, increased formation of dendritic P-bodies in neurons and global transcriptome alterations in patient-derived primary fibroblasts. Our data emphasize the importance of gene expression regulation through the dynamic AGO2-RNA association for human neuronal development.


Asunto(s)
Proteínas Argonautas/genética , Células Germinativas/metabolismo , Mutación/genética , Sistema Nervioso/crecimiento & desarrollo , Sistema Nervioso/metabolismo , Interferencia de ARN , Adolescente , Animales , Proteínas Argonautas/química , Niño , Preescolar , Análisis por Conglomerados , Dendritas/metabolismo , Fibroblastos/metabolismo , Silenciador del Gen , Células HEK293 , Hipocampo/patología , Humanos , Ratones , Simulación de Dinámica Molecular , Neuronas/metabolismo , Fosforilación , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Ratas , Transcriptoma/genética
11.
Front Mol Neurosci ; 11: 268, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30131675

RESUMEN

Genetic defects in SHANK genes are associated with autism. Deletions and truncating mutations suggest haploinsufficiency for Shank3 as a major cause of disease which may be analyzed in appropriate Shank deficient mouse models. Here we will focus on the functional analysis of missense mutations found in SHANK genes. The relevance of most of these mutations for Shank function, and their role in autism pathogenesis is unclear. This is partly due to the fact that mutations spare the most well studied functional domains of Shank3, such as the PDZ and SAM domains, or the short proline-rich motifs which are required for interactions with postsynaptic partners Homer, Cortactin, dynamin, IRSp53 and Abi-1. One set of mutations affects the N-terminal part, including the highly conserved SPN domain and ankyrin repeats. Functional analysis from several groups has indicated that these mutations (e.g., R12C; L68P; R300C, and Q321R) interfere with the critical role of Shank3 for synapse formation. More recently the structural analysis of the SPN-ARR module has begun to shed light on the molecular consequences of mutations in the SPN of Shank3. The SPN was identified as a Ras association domain, with high affinities for GTP-bound, active forms of Ras and Rap. The two autism related mutations in this part of the protein, R12C and L68P, both abolish Ras binding. Further work is directed at identifying the consequences of Ras binding to Shank proteins at postsynaptic sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA