Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Pathog ; 12(11): e1005976, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27832198

RESUMEN

Southeast Asia is an epicenter of multidrug-resistant Plasmodium falciparum strains. Selective pressures on the subcontinent have recurrently produced several allelic variants of parasite drug resistance genes, including the P. falciparum chloroquine resistance transporter (pfcrt). Despite significant reductions in the deployment of the 4-aminoquinoline drug chloroquine (CQ), which selected for the mutant pfcrt alleles that halted CQ efficacy decades ago, the parasite pfcrt locus is continuously evolving. This is highlighted by the presence of a highly mutated allele, Cam734 pfcrt, which has acquired the singular ability to confer parasite CQ resistance without an associated fitness cost. Here, we used pfcrt-specific zinc-finger nucleases to genetically dissect this allele in the pathogenic setting of asexual blood-stage infection. Comparative analysis of drug resistance and growth profiles of recombinant parasites that express Cam734 or variants thereof, Dd2 (the most common Southeast Asian variant), or wild-type pfcrt, revealed previously unknown roles for PfCRT mutations in modulating parasite susceptibility to multiple antimalarial agents. These results were generated in the GC03 strain, used in multiple earlier pfcrt studies, and might differ in natural isolates harboring this allele. Results presented herein show that Cam734-mediated CQ resistance is dependent on the rare A144F mutation that has not been observed beyond Southeast Asia, and reveal distinct impacts of this and other Cam734-specific mutations on CQ resistance and parasite growth rates. Biochemical assays revealed a broad impact of mutant PfCRT isoforms on parasite metabolism, including nucleoside triphosphate levels, hemoglobin catabolism and disposition of heme, as well as digestive vacuole volume and pH. Results from our study provide new insights into the complex molecular basis and physiological impact of PfCRT-mediated antimalarial drug resistance, and inform ongoing efforts to characterize novel pfcrt alleles that can undermine the efficacy of first-line antimalarial drug regimens.


Asunto(s)
Resistencia a Medicamentos/genética , Aptitud Genética/genética , Malaria Falciparum/genética , Proteínas de Transporte de Membrana/genética , Plasmodium falciparum/fisiología , Proteínas Protozoarias/genética , Aminoquinolinas/farmacología , Antimaláricos/farmacología , Genotipo , Humanos , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Mutación , Vacuolas/metabolismo
2.
Biochemistry ; 56(33): 4326-4334, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28719179

RESUMEN

Most investigations of phosphatidylinositol 3'-kinase (PI3K) drug inhibition have been via assays based on ADP appearance or ATP consumption (e.g., Liu, Q., et al. ( 2011 ) J. Med. Chem. 54 , 1473 - 1480 ). However, at least some PI3K isoforms show basal ATPase activity in the absence of PI lipid substrate(s), which may complicate quantification of drug potency, isoform specificity of some drugs, and synergy for drug combinations. In this study, we probe the class I vs class III isoform specificity of a selected set of PI3K inhibitors using a simple, inexpensive, semi high-throughput assay that quantifies production of phosphatidylinositol 3'-phosphate (PI3P) from phosphatidylinositol. Results are compared to previous data largely generated using ATPase activity assays. Good agreement between EC50 values computed via ATPase assays vs the reported PI3P formation assay is found for most drugs, but with a few exceptions. Furthermore, for the first time, drug inhibition of class I vs class III enzymes is compared side-by-side with the same assay for the important class I-specific inhibitors GSK2126458 ("Omipalisib") and NVP-BGT226 ("BGT226") currently in clinical development for advanced solid tumors.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasas Clase III/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Imidazoles/química , Quinolinas/química , Sulfonamidas/química , Fosfatidilinositol 3-Quinasa Clase I/química , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/química , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Humanos , Fosfatos de Fosfatidilinositol , Piridazinas
3.
Biochemistry ; 56(41): 5615-5622, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28898049

RESUMEN

Chloroquine (CQ) resistance (CQR) in Plasmodium falciparum malaria is widespread and has limited the use of CQ in many regions of the globe. Malaria caused by the related human parasite P. vivax is as widespread as is P. falciparum malaria and has been treated with CQ as extensively as has P. falciparum, suggesting that P. vivax parasites have been selected with CQ as profoundly as have P. falciparum parasites. Indeed, a growing number of clinical reports have presented data suggesting increased P. vivax CQR. Cytostatic (growth inhibitory) CQR for P. falciparum is caused by Plasmodium falciparum chloroquine resistance transporter (PfCRT) mutations, and it has been proposed that mutations in the PvCRT orthologue may simliarly cause P. vivax CQR via increasing CQ transport from the P. vivax digestive vacuole. Here we report the first quantitative analysis of drug transport mediated by all known mutant isoforms of Plasmodium vivax chloroquine resistance transporter (PvCRT) in order to test the protein's potential link to growing P. vivax CQR phenomena. Small, but statistically significant, differences in the transport of CQ and other quinoline antimalarial drugs were found for multiple PvCRT isoforms, relative to wild type PvCRT, suggesting that mutations in PvCRT can contribute to P. vivax CQR and other examples of quinoline antimalarial drug resistance.


Asunto(s)
Antimaláricos/metabolismo , Cloroquina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Mutación , Plasmodium vivax/metabolismo , Proteínas Protozoarias/metabolismo , Sustitución de Aminoácidos , Antimaláricos/farmacología , Transporte Biológico , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Cloroquina/farmacología , Recuento de Colonia Microbiana , Resistencia a Medicamentos , Humanos , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/parasitología , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Mutagénesis Sitio-Dirigida , Plasmodium vivax/efectos de los fármacos , Plasmodium vivax/crecimiento & desarrollo , Plasmodium vivax/aislamiento & purificación , Primaquina/metabolismo , Primaquina/farmacología , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Tritio
4.
Biochemistry ; 56(33): 4335-4345, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28719180

RESUMEN

The Plasmodium falciparum malarial parasite genome appears to encode one and only one phosphatidylinositol 3'-kinase (PI3K), and sequence analysis suggests that the enzyme is a "class III"- or "Vps34"-type PI3K. PfVps34 has generated excitement as a possible druggable target and potentially a key target of artemisinin-based antimalarials. In this study, we optimize the PfVps34 gene for heterologous expression in yeast, purify the protein to homogeneity, use a recently validated quantitative assay for phosphatidylinositol 3'-phosphate production from phosphatidylinositol ( Hassett et al., companion paper; DOI 10.1021/acs.biochem.7b00416 ) to quantify activity and drug inhibition of that activity, and investigate the importance of key residues in the enzyme's catalytic and "N-lobe" domains. Data suggest that PfVps34 is indeed inhibited by artemisinin and related drugs but only under conditions that cleave the drugs' endoperoxide bridge to generate reactive alkylating agents.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase III , Clonación Molecular , Expresión Génica , Plasmodium falciparum , Proteínas Protozoarias , Fosfatidilinositol 3-Quinasas Clase III/biosíntesis , Fosfatidilinositol 3-Quinasas Clase III/química , Fosfatidilinositol 3-Quinasas Clase III/genética , Fosfatidilinositol 3-Quinasas Clase III/aislamiento & purificación , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Dominios Proteicos , Proteínas Protozoarias/biosíntesis , Proteínas Protozoarias/química , Proteínas Protozoarias/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Malar J ; 15: 186, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-27036417

RESUMEN

BACKGROUND: Recent work has perfected yeast-based methods for measuring drug transport by the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT). METHODS: The approach relies on inducible heterologous expression of PfCRT in Saccharomyces cerevisiae yeast. In these experiments selecting drug concentrations are not toxic to the yeast, nor is expression of PfCRT alone toxic. Only when PfCRT is expressed in the presence of CQ is the growth of yeast impaired, due to inward transport of chloroquine (CQ) via the transporter. RESULTS: During analysis of all 53 known naturally occurring PfCRT isoforms, two isoforms (PH1 and PH2 PfCRT) were found to be intrinsically toxic to yeast, even in the absence of CQ. Additional analysis of six very recently identified PfCRT isoforms from Malaysia also showed some toxicity. In this paper the nature of this yeast toxicity is examined. Data also show that PH1 and PH2 isoforms of PfCRT transport CQ with an efficiency intermediate to that catalyzed by previously studied CQR conferring isoforms. Mutation of PfCRT at position 160 is found to perturb vacuolar physiology, suggesting a fitness cost to position 160 amino acid substitutions. CONCLUSION: These data further define the wide range of activities that exist for PfCRT isoforms found in P. falciparum isolates from around the globe.


Asunto(s)
Proteínas de Transporte de Membrana/toxicidad , Isoformas de Proteínas/toxicidad , Proteínas Protozoarias/toxicidad , Proteínas Recombinantes/toxicidad , Saccharomyces cerevisiae/fisiología , Vacuolas/fisiología , Cloroquina/metabolismo , Malasia , Proteínas de Transporte de Membrana/genética , Isoformas de Proteínas/genética , Proteínas Protozoarias/genética , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética
6.
Biochemistry ; 54(32): 5083-94, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26208441

RESUMEN

At least 53 distinct isoforms of Plasmodium falciparum chloroquine resistance transporter (PfCRT) protein are expressed in strains or isolates of P. falciparum malarial parasites from around the globe. These parasites exhibit a range of sensitivities to chloroquine (CQ) and other drugs. Mutant PfCRT is believed to confer cytostatic CQ resistance (CQR(CS)) by transporting CQ away from its DV target (free heme released upon hemoglobin digestion). One theory is that variable CQ transport catalyzed by these different PfCRT isoforms is responsible for the range of CQ sensitivities now found for P. falciparum. Alternatively, additional mutations in drug-selected parasites, or additional functions of PfCRT, might complement PfCRT-mediated CQ transport in conferring the range of observed resistance phenotypes. To distinguish between these possibilities, we recently optimized a convenient method for measuring PfCRT-mediated CQ transport, involving heterologous expression in Saccharomyces cerevisiae. Here, we use this method to quantify drug transport activity for 45 of 53 of the naturally occurring PfCRT isoforms. Data show that variable levels of CQR likely depend upon either additional PfCRT functions or additional genetic events, including perhaps changes that influence DV membrane potential. The data also suggest that the common K76T PfCRT mutation that is often used to distinguish a P. falciparum CQR phenotype is not, in and of itself, a fully reliable indicator of CQR status.


Asunto(s)
Cloroquina/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Antimaláricos/metabolismo , Antimaláricos/farmacología , Secuencia de Bases , Transporte Biológico Activo , Cloroquina/farmacología , ADN Protozoario/genética , Resistencia a Medicamentos/genética , Genes Protozoarios , Cinética , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Fenotipo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Protozoarias/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido
7.
Nat Commun ; 14(1): 2810, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208330

RESUMEN

Several vaccines have been widely used to counteract the global pandemic caused by SARS-CoV-2. However, due to the rapid emergence of SARS-CoV-2 variants of concern (VOCs), further development of vaccines that confer broad and longer-lasting protection against emerging VOCs are needed. Here, we report the immunological characteristics of a self-amplifying RNA (saRNA) vaccine expressing the SARS-CoV-2 Spike (S) receptor binding domain (RBD), which is membrane-anchored by fusing with an N-terminal signal sequence and a C-terminal transmembrane domain (RBD-TM). Immunization with saRNA RBD-TM delivered in lipid nanoparticles (LNP) efficiently induces T-cell and B-cell responses in non-human primates (NHPs). In addition, immunized hamsters and NHPs are protected against SARS-CoV-2 challenge. Importantly, RBD-specific antibodies against VOCs are maintained for at least 12 months in NHPs. These findings suggest that this saRNA platform expressing RBD-TM will be a useful vaccine candidate inducing durable immunity against emerging SARS-CoV-2 strains.


Asunto(s)
COVID-19 , Vacunas , Animales , Cricetinae , Humanos , SARS-CoV-2/genética , COVID-19/prevención & control , Motivo de Reconocimiento de ARN , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales
8.
PLoS One ; 16(3): e0248057, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33690638

RESUMEN

Over the past decade, artemisinin (ART)-combination therapies (ACTs) have shown declining efficacy within Southeast Asia (SEA). These resistance-like phenomena manifest as a delayed clearance phenotype (DCP) in some patients treated with ACTs. ACTs are currently the recommended treatment for P. falciparum infections by the World Health Organization (WHO), and they are our last line of defense to effectively treat all strains of malaria. Acceleration of antimicrobial resistance (AMR) is often theorized to be exacerbated by the use of subtherapeutic dosages of drugs ("substandard" drug), which for ACTs has been well documented over the last decade. Troublingly, in 2017, the WHO estimated that nearly 1 in 10 medical products tested in low- and middle-income countries failed to meet quality standards. We have developed a tissue culture-based approach for testing possible connections between substandard treatment and the spread of ACT resistant blood stage forms of P. falciparum. Via sequencing of pfk13, a molecular marker that is predictive for ART resistance (ARTR), we monitor competition of sensitive vs resistant strains over time and under various conditions and define conditions that favor emergence of ARTR parasites. Our findings help to define the conditions under which substandard drug treatments might favor the proliferation of mutant PfK13-mediated drug resistant strains over drug sensitive.


Asunto(s)
Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Resistencia a Medicamentos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/farmacología , Artemisininas/farmacología , Asia Sudoriental/epidemiología , Humanos , Malaria Falciparum/epidemiología , Plasmodium falciparum/crecimiento & desarrollo
9.
Am J Trop Med Hyg ; 101(6): 1204-1211, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31642425

RESUMEN

In this review, we provide an epidemiological history of the emergence and ongoing spread of evolving Plasmodium falciparum artemisinin resistance (ARTR). Southeast Asia has been the focal point for emergence and spread of multiple antimalarial drug resistance phenomena, and is once again for evolving ARTR, also known as the "delayed clearance phenotype" (DCP). The five countries most impacted, Cambodia, Thailand, Myanmar, Laos, and Vietnam, each have complex histories of antimalarial drug use over many decades, which have in part molded the use of various artemisinin combination therapies (ACTs) within each country. We catalog the use of ACTs, evolving loss of ACT efficacy, and the frequency of pfk13 mutations (mutations associated with ARTR) in the Greater Mekong Subregion and map the historical spread of ARTR/DCP parasites. These data should assist improved surveillance and deployment of next-generation ACTs.


Asunto(s)
Artemisininas/farmacología , Resistencia a Medicamentos/genética , Malaria Falciparum/epidemiología , Mutación , Plasmodium falciparum/efectos de los fármacos , Artemisininas/uso terapéutico , Asia Sudoriental/epidemiología , Quimioterapia Combinada , Genotipo , Humanos , Malaria Falciparum/tratamiento farmacológico , Fenotipo , Plasmodium falciparum/genética
10.
Trends Parasitol ; 34(11): 925-927, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29934102

RESUMEN

Phosphatidylinositol (PI) kinases (PIKs) regulate cell proliferation, survival, membrane trafficking, and other processes. PIK classes are distinguished by substrate preference and their distinct phosphorylated PI products. Recently two Plasmodium falciparum PIKs (PfPIKs) have been recognized as attractive new drug targets. Here we briefly summarize PIK biochemistry and recent progress with PfPIKs.


Asunto(s)
Malaria/tratamiento farmacológico , Redes y Vías Metabólicas , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Plasmodium falciparum/enzimología , Sistemas de Liberación de Medicamentos , Humanos , Malaria/parasitología , Fosfatidilinositol 3-Quinasas/genética , Fosforilación , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA