Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Europace ; 25(1): 6-27, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35894842

RESUMEN

Despite marked progress in the management of atrial fibrillation (AF), detecting AF remains difficult and AF-related complications cause unacceptable morbidity and mortality even on optimal current therapy. This document summarizes the key outcomes of the 8th AFNET/EHRA Consensus Conference of the Atrial Fibrillation NETwork (AFNET) and the European Heart Rhythm Association (EHRA). Eighty-three international experts met in Hamburg for 2 days in October 2021. Results of the interdisciplinary, hybrid discussions in breakout groups and the plenary based on recently published and unpublished observations are summarized in this consensus paper to support improved care for patients with AF by guiding prevention, individualized management, and research strategies. The main outcomes are (i) new evidence supports a simple, scalable, and pragmatic population-based AF screening pathway; (ii) rhythm management is evolving from therapy aimed at improving symptoms to an integrated domain in the prevention of AF-related outcomes, especially in patients with recently diagnosed AF; (iii) improved characterization of atrial cardiomyopathy may help to identify patients in need for therapy; (iv) standardized assessment of cognitive function in patients with AF could lead to improvement in patient outcomes; and (v) artificial intelligence (AI) can support all of the above aims, but requires advanced interdisciplinary knowledge and collaboration as well as a better medico-legal framework. Implementation of new evidence-based approaches to AF screening and rhythm management can improve outcomes in patients with AF. Additional benefits are possible with further efforts to identify and target atrial cardiomyopathy and cognitive impairment, which can be facilitated by AI.


Asunto(s)
Fibrilación Atrial , Accidente Cerebrovascular , Humanos , Fibrilación Atrial/complicaciones , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/terapia , Inteligencia Artificial , Diagnóstico Precoz , Consenso , Cognición , Accidente Cerebrovascular/prevención & control
2.
Eur J Clin Invest ; 52(1): e13664, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34390499

RESUMEN

BACKGROUND: The underlying mechanisms of exercise intolerance in sickle cell anaemia (SCA) patients are complex and not yet completely understood. While latent heart failure at rest could be unmasked upon exercise, most previous studies assessed cardiac function at rest. We aimed to investigate exercise cardiovascular reserve as a potential contributor to exercise intolerance in adult SCA patients. METHODS: In this observational prospective study, we compared prospectively 60 SCA patients (median age 31 years, 60% women) to 20 matched controls. All subjects underwent symptom-limited combined exercise echocardiography and oxygen uptake (VO2 ) measurements. Differences between arterial and venous oxygen content (C(a-v)O2 ) were calculated. Cardiac reserve was defined as the absolute change in cardiac index (Ci) from baseline to peak exercise. RESULTS: Compared to controls, SCA patients demonstrated severe exercise intolerance (median peakVO2 , 34.3 vs. 19.7 ml/min/kg, respectively, p < .0001). SCA patients displayed heterogeneously increased Ci from rest to peak exercise (median +5.8, range 2.6 to 10.6 L/min/m²) which correlated with peakVO2 (r = 0.71, p < .0001). In contrast, the C(a-v)O2 exercise reserve was homogenously reduced and did not correlate with peakVO2 (r = 0.18, p = .16). While haemoglobin level and C(a-v)O2 were similar in SCA subgroups, SCA patients in the lower VO2 tertile had chronotropic incompetence and left ventricular diastolic dysfunction (left atrial peak longitudinal strain was reduced, and both E/e' ratio and left atrial volume index were increased) and were characterized by a reduced cardiac reserve, +5.0[4.2-5.5] compared to +6.7[5.5-7.8] L/min/m² for the rest of the patient cohort, p < .0001. CONCLUSIONS: Altered cardiac reserve due to chronotropic incompetence and left ventricular diastolic dysfunction seems to be an important determinant of exercise intolerance in adult SCA patients.


Asunto(s)
Anemia de Células Falciformes/fisiopatología , Tolerancia al Ejercicio , Corazón/fisiopatología , Adulto , Anemia de Células Falciformes/complicaciones , Femenino , Humanos , Masculino , Estudios Prospectivos , Disfunción Ventricular Izquierda/complicaciones , Adulto Joven
3.
Circ Res ; 126(10): 1330-1342, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32175811

RESUMEN

RATIONALE: Fibro-fatty infiltration of subepicardial layers of the atrial wall has been shown to contribute to the substrate of atrial fibrillation. OBJECTIVE: Here, we examined if the epicardium that contains multipotent cells is involved in this remodeling process. METHODS AND RESULTS: One hundred nine human surgical right atrial specimens were evaluated. There was a relatively greater extent of epicardial thickening and dense fibro-fatty infiltrates in atrial tissue sections from patients aged over 70 years who had mitral valve disease or atrial fibrillation when compared with patients aged less than 70 years with ischemic cardiomyopathy as indicated using logistic regression adjusted for age and gender. Cells coexpressing markers of epicardial progenitors and fibroblasts were detected in fibro-fatty infiltrates. Such epicardial remodeling was reproduced in an experimental model of atrial cardiomyopathy in rat and in Wilms tumor 1 (WT1)CreERT2/+;ROSA-tdT+/- mice. In the latter, genetic lineage tracing demonstrated the epicardial origin of fibroblasts within fibro-fatty infiltrates. A subpopulation of human adult epicardial-derived cells expressing PDGFR (platelet-derived growth factor receptor)-α were isolated and differentiated into myofibroblasts in the presence of Ang II (angiotensin II). Furthermore, single-cell RNA-sequencing analysis identified several clusters of adult epicardial-derived cells and revealed their specification from adipogenic to fibrogenic cells in the rat model of atrial cardiomyopathy. CONCLUSIONS: Epicardium is reactivated during the formation of the atrial cardiomyopathy. Subsets of adult epicardial-derived cells, preprogrammed towards a specific cell fate, contribute to fibro-fatty infiltration of subepicardium of diseased atria. Our study reveals the biological basis for chronic atrial myocardial remodeling that paves the way of atrial fibrillation.


Asunto(s)
Tejido Adiposo/patología , Fibrilación Atrial/etiología , Remodelación Atrial , Cardiomiopatías/complicaciones , Atrios Cardíacos/patología , Miocardio/patología , Pericardio/patología , Potenciales de Acción , Adipocitos/metabolismo , Adipocitos/patología , Tejido Adiposo/metabolismo , Anciano , Animales , Fibrilación Atrial/metabolismo , Fibrilación Atrial/patología , Fibrilación Atrial/fisiopatología , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Linaje de la Célula , Modelos Animales de Enfermedad , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Atrios Cardíacos/metabolismo , Atrios Cardíacos/fisiopatología , Frecuencia Cardíaca , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocardio/metabolismo , Pericardio/metabolismo , Pericardio/fisiopatología , Ratas Wistar , Células Madre/metabolismo , Células Madre/patología , Proteínas WT1/genética , Proteínas WT1/metabolismo
4.
J Mol Cell Cardiol ; 158: 49-62, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33974928

RESUMEN

AIMS: Atrial Fibrillation (AF) is an arrhythmia of increasing prevalence in the aging populations of developed countries. One of the important indicators of AF is sustained atrial dilatation, highlighting the importance of mechanical overload in the pathophysiology of AF. The mechanisms by which atrial cells, including fibroblasts, sense and react to changing mechanical forces, are not fully elucidated. Here, we characterise stretch-activated ion channels (SAC) in human atrial fibroblasts and changes in SAC- presence and activity associated with AF. METHODS AND RESULTS: Using primary cultures of human atrial fibroblasts, isolated from patients in sinus rhythm or sustained AF, we combine electrophysiological, molecular and pharmacological tools to identify SAC. Two electrophysiological SAC- signatures were detected, indicative of cation-nonselective and potassium-selective channels. Using siRNA-mediated knockdown, we identified the cation-nonselective SAC as Piezo1. Biophysical properties of the potassium-selective channel, its sensitivity to calcium, paxilline or iberiotoxin (blockers), and NS11021 (activator), indicated presence of calcium-dependent 'big potassium channels' (BKCa). In cells from AF patients, Piezo1 activity and mRNA expression levels were higher than in cells from sinus rhythm patients, while BKCa activity (but not expression) was downregulated. Both Piezo1-knockdown and removal of extracellular calcium from the patch pipette resulted in a significant reduction of BKCa current during stretch. No co-immunoprecipitation of Piezo1 and BKCa was detected. CONCLUSIONS: Human atrial fibroblasts contain at least two types of ion channels that are activated during stretch: Piezo1 and BKCa. While Piezo1 is directly stretch-activated, the increase in BKCa activity during mechanical stimulation appears to be mainly secondary to calcium influx via SAC such as Piezo1. During sustained AF, Piezo1 is increased, while BKCa activity is reduced, highlighting differential regulation of both channels. Our data support the presence and interplay of Piezo1 and BKCa in human atrial fibroblasts in the absence of physical links between the two channel proteins.


Asunto(s)
Arritmia Sinusal/metabolismo , Fibrilación Atrial/metabolismo , Remodelación Atrial/genética , Atrios Cardíacos/metabolismo , Canales Iónicos/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Miofibroblastos/metabolismo , Transducción de Señal/genética , Adulto , Anciano , Anciano de 80 o más Años , Arritmia Sinusal/patología , Arritmia Sinusal/cirugía , Fibrilación Atrial/patología , Fibrilación Atrial/cirugía , Remodelación Atrial/efectos de los fármacos , Calcio/metabolismo , Células Cultivadas , Femenino , Técnicas de Silenciamiento del Gen , Atrios Cardíacos/patología , Humanos , Indoles/farmacología , Canales Iónicos/genética , Transporte Iónico/efectos de los fármacos , Transporte Iónico/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/agonistas , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/antagonistas & inhibidores , Masculino , Persona de Mediana Edad , Péptidos/farmacología , Transducción de Señal/efectos de los fármacos , Tetrazoles/farmacología , Tiourea/análogos & derivados , Tiourea/farmacología , Transfección
5.
J Mol Cell Cardiol ; 144: 127-139, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32445844

RESUMEN

Ion channel trafficking powerfully influences cardiac electrical activity as it regulates the number of available channels at the plasma membrane. Studies have largely focused on identifying the molecular determinants of the trafficking of the atria-specific KV1.5 channel, the molecular basis of the ultra-rapid delayed rectifier current IKur. Besides, regulated KV1.5 channel recycling upon changes in homeostatic state and mechanical constraints in native cardiomyocytes has been well documented. Here, using cutting-edge imaging in live myocytes, we investigated the dynamics of this channel in the plasma membrane. We demonstrate that the clathrin pathway is a major regulator of the functional expression of KV1.5 channels in atrial myocytes, with the microtubule network as the prominent organizer of KV1.5 transport within the membrane. Both clathrin blockade and microtubule disruption result in channel clusterization with reduced membrane mobility and internalization, whereas disassembly of the actin cytoskeleton does not. Mobile KV1.5 channels are associated with the microtubule plus-end tracking protein EB1 whereas static KV1.5 clusters are associated with stable acetylated microtubules. In human biopsies from patients in atrial fibrillation associated with atrial remodeling, drastic modifications in the trafficking balance occurs together with alteration in microtubule polymerization state resulting in modest reduced endocytosis and increased recycling. Consequently, hallmark of atrial KV1.5 dynamics within the membrane is clathrin- and microtubule- dependent. During atrial remodeling, predominance of anterograde trafficking activity over retrograde trafficking could result in accumulation ok KV1.5 channels in the plasma membrane.


Asunto(s)
Clatrina/metabolismo , Microtúbulos/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Multimerización de Proteína , Animales , Fibrilación Atrial/etiología , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Remodelación Atrial/genética , Clatrina/química , Vesículas Cubiertas por Clatrina , Citoesqueleto/química , Citoesqueleto/metabolismo , Fenómenos Electrofisiológicos , Atrios Cardíacos/metabolismo , Humanos , Canal de Potasio Kv1.5/genética , Canal de Potasio Kv1.5/metabolismo , Microtúbulos/química , Microtúbulos/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Canales de Potasio con Entrada de Voltaje/química , Ratas , Sarcolema/metabolismo , Transducción de Señal
6.
Proc Natl Acad Sci U S A ; 114(5): E771-E780, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096344

RESUMEN

The abundance of epicardial adipose tissue (EAT) is associated with atrial fibrillation (AF), the most frequent cardiac arrhythmia. However, both the origin and the factors involved in EAT expansion are unknown. Here, we found that adult human atrial epicardial cells were highly adipogenic through an epithelial-mesenchymal transition both in vitro and in vivo. In a genetic lineage tracing the WT1CreERT2+/-RosatdT+/- mouse model subjected to a high-fat diet, adipocytes of atrial EAT derived from a subset of epicardial progenitors. Atrial myocardium secretome induces the adipogenic differentiation of adult mesenchymal epicardium-derived cells by modulating the balance between mesenchymal Wingless-type Mouse Mammary Tumor Virus integration site family, member 10B (Wnt10b)/ß-catenin and adipogenic ERK/MAPK signaling pathways. The adipogenic property of the atrial secretome was enhanced in AF patients. The atrial natriuretic peptide secreted by atrial myocytes is a major adipogenic factor operating at a low concentration by binding to its natriuretic peptide receptor A (NPRA) receptor and, in turn, by activating a cGMP-dependent pathway. Hence, our data indicate cross-talk between EAT expansion and mechanical function of the atrial myocardium.


Asunto(s)
Adipogénesis/fisiología , Tejido Adiposo/metabolismo , Factor Natriurético Atrial/metabolismo , Atrios Cardíacos/metabolismo , Pericardio/metabolismo , Adipocitos/citología , Anciano , Animales , Células Cultivadas , Dieta Alta en Grasa , Transición Epitelial-Mesenquimal , Femenino , Atrios Cardíacos/citología , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Miocitos Cardíacos/metabolismo , Pericardio/citología , Proteínas Proto-Oncogénicas/metabolismo , Células Madre/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
7.
Circulation ; 138(8): 809-822, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29500246

RESUMEN

BACKGROUND: Aging induces cardiac structural and functional changes linked to the increased deposition of extracellular matrix proteins, including OPN (osteopontin), conducing to progressive interstitial fibrosis. Although OPN is involved in various pathological conditions, its role in myocardial aging remains unknown. METHODS: OPN deficient mice (OPN-/-) with their wild-type (WT) littermates were evaluated at 2 and 14 months of age in terms of cardiac structure, function, histology and key molecular markers. OPN expression was determined by reverse-transcription polymerase chain reaction, immunoblot and immunofluorescence. Luminex assays were performed to screen plasma samples for various cytokines/adipokines in addition to OPN. Similar explorations were conducted in aged WT mice after surgical removal of visceral adipose tissue (VAT) or treatment with a small-molecule OPN inhibitor agelastatin A. Primary WT fibroblasts were incubated with plasma from aged WT and OPN-/- mice, and evaluated for senescence (senescence-associated ß-galactosidase and p16), as well as fibroblast activation markers (Acta2 and Fn1). RESULTS: Plasma OPN levels increased in WT mice during aging, with VAT showing the strongest OPN induction contrasting with myocardium that did not express OPN. VAT removal in aged WT mice restored cardiac function and decreased myocardial fibrosis in addition to a substantial reduction of circulating OPN and transforming growth factor ß levels. OPN deficiency provided a comparable protection against age-related cardiac fibrosis and dysfunction. Intriguingly, a strong induction of senescence in cardiac fibroblasts was observed in both VAT removal and OPN-/- mice. The addition of plasma from aged OPN-/- mice to cultures of primary cardiac fibroblasts induced senescence and reduced their activation (compared to aged WT plasma). Finally, Agelastatin A treatment of aged WT mice fully reversed age-related myocardial fibrosis and dysfunction. CONCLUSIONS: During aging, VAT represents the main source of OPN and alters heart structure and function via its profibrotic secretome. As a proof-of-concept, interventions targeting OPN, such as VAT removal and OPN deficiency, rescued the heart and induced a selective modulation of fibroblast senescence. Our work uncovers OPN's role in the context of myocardial aging and proposes OPN as a potential new therapeutic target for a healthy cardiac aging.


Asunto(s)
Proliferación Celular , Senescencia Celular , Fibroblastos/metabolismo , Grasa Intraabdominal/metabolismo , Miocardio/metabolismo , Osteopontina/metabolismo , Comunicación Paracrina , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/prevención & control , Factores de Edad , Envejecimiento , Animales , Células Cultivadas , Fibroblastos/patología , Fibrosis , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/patología , Osteopontina/deficiencia , Osteopontina/genética , Prueba de Estudio Conceptual , Transducción de Señal , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda , Remodelación Ventricular
8.
Physiol Rev ; 92(3): 1317-58, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22811429

RESUMEN

Cardiac myocytes are characterized by distinct structural and functional entities involved in the generation and transmission of the action potential and the excitation-contraction coupling process. Key to their function is the specific organization of ion channels and transporters to and within distinct membrane domains, which supports the anisotropic propagation of the depolarization wave. This review addresses the current knowledge on the molecular actors regulating the distinct trafficking and targeting mechanisms of ion channels in the highly polarized cardiac myocyte. In addition to ubiquitous mechanisms shared by other excitable cells, cardiac myocytes show unique specialization, illustrated by the molecular organization of myocyte-myocyte contacts, e.g., the intercalated disc and the gap junction. Many factors contribute to the specialization of the cardiac sarcolemma and the functional expression of cardiac ion channels, including various anchoring proteins, motors, small GTPases, membrane lipids, and cholesterol. The discovery of genetic defects in some of these actors, leading to complex cardiac disorders, emphasizes the importance of trafficking and targeting of ion channels to cardiac function. A major challenge in the field is to understand how these and other actors work together in intact myocytes to fine-tune ion channel expression and control cardiac excitability.


Asunto(s)
Comunicación Celular , Membrana Celular/metabolismo , Canales Iónicos/metabolismo , Miocitos Cardíacos/metabolismo , Transducción de Señal , Potenciales de Acción , Animales , Comunicación Celular/genética , Acoplamiento Excitación-Contracción , Cardiopatías/genética , Cardiopatías/metabolismo , Cardiopatías/fisiopatología , Humanos , Canales Iónicos/genética , Cinética , Metabolismo de los Lípidos , Mutación , Transporte de Proteínas , Sarcolema/metabolismo , Transducción de Señal/genética
9.
Radiology ; 286(1): 83-92, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28813234

RESUMEN

Purpose To determine whether left atrial (LA) strain quantification with cardiac magnetic resonance (MR) imaging feature tracking is associated with the severity of LA fibrofatty myocardial remodeling at histologic analysis. Materials and Methods This prospective case-control study was approved by the institutional review board. LA strain was evaluated with cardiac MR feature tracking between January 2014 and March 2015 in 13 consecutive patients (mean age, 61 years ± 19; nine male) with mitral regurgitation in the 24 hours before mitral valve surgery and 13 age- and sex-matched healthy control subjects. LA strain parameters were compared first between control subjects and patients and then according to atrial fibrillation and mitral regurgitation status. Associations between LA strain and histology of preoperative biopsies were reported by using receiver operating characteristic curve analysis and Spearman correlation. Results Peak longitudinal atrial strain (PLAS) was significantly lower in patients with mitral regurgitation than in healthy control subjects (P < .001). Increased LA remodeling was significantly related to altered LA strain, and the strongest association was found between PLAS and the degree of fibrofatty myocardial replacement at histologic analysis (r = -0.75, P = .017). LA end-diastolic volume was increased in patients with mitral regurgitation when compared with that in healthy volunteers (P < .001) because of volume overload; however, volume did not correlate with the histologic degree of LA fibrofatty replacement (r = -0.35, P = .330). Conclusion LA strain, especially PLAS, correlates strongly with the degree of fibrofatty replacement at histologic analysis. Such functional imaging biomarker in combination with LA volumetry could help to guide clinical decisions, since myocardial structural remodeling is a known morphologic substrate of LA dysfunction leading to atrial fibrillation with adverse outcome. © RSNA, 2017 Online supplemental material is available for this article.


Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Remodelación Atrial , Atrios Cardíacos/diagnóstico por imagen , Imagen por Resonancia Cinemagnética/métodos , Tejido Adiposo/patología , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Fibrosis/diagnóstico por imagen , Fibrosis/patología , Atrios Cardíacos/patología , Humanos , Masculino , Persona de Mediana Edad , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Insuficiencia de la Válvula Mitral/patología , Estudios Prospectivos
10.
Circ Res ; 119(4): 544-56, 2016 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-27364017

RESUMEN

RATIONALE: Mechanisms underlying membrane protein localization are crucial in the proper function of cardiac myocytes. The main cardiac sodium channel, NaV1.5, carries the sodium current (INa) that provides a rapid depolarizing current during the upstroke of the action potential. Although enriched in the intercalated disc, NaV1.5 is present in different membrane domains in myocytes and interacts with several partners. OBJECTIVE: To test the hypothesis that the MAGUK (membrane-associated guanylate kinase) protein CASK (calcium/calmodulin-dependent serine protein kinase) interacts with and regulates NaV1.5 in cardiac myocytes. METHODS AND RESULTS: Immunostaining experiments showed that CASK localizes at lateral membranes of cardiac myocytes, in association with dystrophin. Whole-cell patch clamp showed that CASK-silencing increases INa in vitro. In vivo CASK knockdown similarly increased INa recorded in freshly isolated myocytes. Pull-down experiments revealed that CASK directly interacts with the C-terminus of NaV1.5. CASK silencing reduces syntrophin expression without affecting NaV1.5 and dystrophin expression levels. Total Internal Reflection Fluorescence microscopy and biotinylation assays showed that CASK silencing increased the surface expression of NaV1.5 without changing mRNA levels. Quantification of NaV1.5 expression at the lateral membrane and intercalated disc revealed that the lateral membrane pool only was increased upon CASK silencing. The protein transport inhibitor brefeldin-A prevented INa increase in CASK-silenced myocytes. During atrial dilation/remodeling, CASK expression was reduced but its localization remained unchanged. CONCLUSION: This study constitutes the first description of an unconventional MAGUK protein, CASK, which directly interacts with NaV1.5 channel and controls its surface expression at the lateral membrane by regulating ion channel trafficking.


Asunto(s)
Regulación hacia Abajo/fisiología , Guanilato-Quinasas/metabolismo , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Animales , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Unión Proteica/fisiología , Ratas
11.
Eur Heart J ; 38(1): 53-61, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26612579

RESUMEN

AIMS: Accumulation of atrial adipose tissue is associated with atrial fibrillation (AF). However, the underlying mechanisms remain poorly understood. We examined the relationship between the characteristics of fatty infiltrates of the atrial myocardium and the history of AF. METHODS AND RESULTS: Atrial samples, collected in 92 patients during cardiac surgery and in a sheep model of persistent AF, were subjected to a detailed histological analysis. In sections of human right atrial samples, subepicardial fatty infiltrations were commonly observed in the majority of patients. A clear difference in the appearance and fibrotic content of these fatty infiltrations was observed. Fibro-fatty infiltrates predominated in patients with permanent AF (no AF: 37 ± 24% vs. paroxysmal AF: 50 ± 21% vs. permanent AF: 64 ± 23%, P < 0.001). An inverse correlation between fibrotic remodelling and the amount of subepicardial adipose tissue suggested the progressive fibrosis of fatty infiltrates with permanent AF. This hypothesis was tested in a sheep model of AF. In AF sheep, an increased accumulation of peri-atrial fat depot was observed on cardiac magnetic resonance imaging and dense fibro-fatty infiltrations predominated in the left atria of AF sheep. Cellular inflammation, mainly consisting of functional cytotoxic T lymphocytes, was observed together with adipocyte cell death in human atria. CONCLUSION: Atrial fibrillation is associated with the fibrosis of subepicardial fatty infiltrates, a process in which cytotoxic lymphocytes might be involved. This remodelling of the atrial subepicardium could contribute to structural remodelling forming a substrate for AF.


Asunto(s)
Tejido Adiposo/patología , Fibrilación Atrial/patología , Remodelación Atrial/fisiología , Miocardio/patología , Anciano , Análisis de Varianza , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Femenino , Fibrosis/fisiopatología , Atrios Cardíacos , Humanos , Angiografía por Resonancia Magnética , Masculino , Estudios Retrospectivos , Ovinos
12.
Eur Heart J ; 37(20): 1573-81, 2016 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26578197

RESUMEN

Intensive research over the last few decades has seen significant advances in our understanding of the complex mechanisms underlying atrial fibrillation (AF). The epidemic of AF and related hospitalizations has been described as a 'rising tide' with estimates of the global AF burden showing no sign of retreat. There is urgency for effective translational programs in this field to facilitate more individualized and targeted therapy to modify the abnormal atrial substrate responsible for the perpetuation of this arrhythmia. In this review, we chose to focus on several novel aspects of AF pathogenesis whereby practical applications in clinical practice are currently available or potentially not too far away. Specifically, we explored the contribution of atrial fibrosis, epicardial adipose tissue, autonomic nervous system, hyper-coagulability, and focal drivers to adverse atrial remodelling and AF persistence. We also highlighted the potential practical means of monitoring and targeting these factors to achieve better outcomes in patients suffering from this debilitating illness. Emerging data also support a new paradigm for targeting AF substrate with aggressive risk factor management. Finally, multi-disciplinary integrated care approach has shown great promise in improving cardiovascular outcomes of patients with AF along with potential cost savings.


Asunto(s)
Fibrilación Atrial , Remodelación Atrial , Fibrosis , Atrios Cardíacos , Humanos , Pericardio
13.
Am J Physiol Heart Circ Physiol ; 310(5): H542-9, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26747498

RESUMEN

Importance of left atrial (LA) phasic function evaluation is increasingly recognized for its incremental value in terms of prognosis and risk stratification. LA phasic deformation in the pathway of normal aging has been characterized using echocardiographic speckle tracking. However, no data are available regarding age-related variations using feature-racking (FT) techniques from standard cine magnetic resonance imaging (MRI). We studied 94 healthy adults (41 ± 14 yr, 47 women), who underwent MRI and Doppler echocardiography on the same day for left ventricular (LV) diastolic function evaluation. From cine MRI, longitudinal strain and strain rate, radial motion fraction, and radial relative velocity, respectively, corresponding to the reservoir, conduit, and LA contraction phases, were measured using dedicated FT software. Longitudinal strain and radial motion fraction decreased gradually and significantly with aging for both reservoir (r > 0.31, P < 0.003) and conduit (r > 0.54, P < 0.001) phases, whereas they remained unchanged during the LA contraction phase. Subsequently, the LA contraction-to-reservoir ratio increased significantly with age (r > 0.44, P < 0.001). Longitudinal strain rate and radial relative velocity significantly decreased with age (reservoir: r = 0.39, P < 0.001, conduit: r > 0.54, P < 0.001), and these associations tended to be stronger in women than in men. Finally, associations of LA functional indexes with age were stronger in individuals with lower transmitral early-to-atrial maximal velocity ratio and mitral annulus maximal longitudinal velocity, as well as higher transmitral early maximal-to-mitral annulus maximal longitudinal velocity ratio, highlighting the LV-LA interplay. Age-related changes in LA phasic function indexes were quantified by cine MRI images using a FT technique and were significantly related to age and LV diastolic function.


Asunto(s)
Envejecimiento , Función del Atrio Izquierdo , Atrios Cardíacos/fisiopatología , Imagen por Resonancia Cinemagnética , Contracción Miocárdica , Adulto , Factores de Edad , Envejecimiento/patología , Fenómenos Biomecánicos , Ecocardiografía Doppler , Femenino , Voluntarios Sanos , Atrios Cardíacos/diagnóstico por imagen , Atrios Cardíacos/patología , Humanos , Masculino , Persona de Mediana Edad , Factores Sexuales , Estrés Mecánico , Factores de Tiempo , Función Ventricular Izquierda , Adulto Joven
14.
Proc Natl Acad Sci U S A ; 110(41): E3955-64, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-24065831

RESUMEN

Atrial myocytes are continuously exposed to mechanical forces including shear stress. However, in atrial myocytes, the effects of shear stress are poorly understood, particularly with respect to its effect on ion channel function. Here, we report that shear stress activated a large outward current from rat atrial myocytes, with a parallel decrease in action potential duration. The main ion channel underlying the increase in current was found to be Kv1.5, the recruitment of which could be directly observed by total internal reflection fluorescence microscopy, in response to shear stress. The effect was primarily attributable to recruitment of intracellular pools of Kv1.5 to the sarcolemma, as the response was prevented by the SNARE protein inhibitor N-ethylmaleimide and the calcium chelator BAPTA. The process required integrin signaling through focal adhesion kinase and relied on an intact microtubule system. Furthermore, in a rat model of chronic hemodynamic overload, myocytes showed an increase in basal current despite a decrease in Kv1.5 protein expression, with a reduced response to shear stress. Additionally, integrin beta1d expression and focal adhesion kinase activation were increased in this model. This data suggests that, under conditions of chronically increased mechanical stress, the integrin signaling pathway is overactivated, leading to increased functional Kv1.5 at the membrane and reducing the capacity of cells to further respond to mechanical challenge. Thus, pools of Kv1.5 may comprise an inducible reservoir that can facilitate the repolarization of the atrium under conditions of excessive mechanical stress.


Asunto(s)
Atrios Cardíacos/citología , Canal de Potasio Kv1.5/metabolismo , Miocitos Cardíacos/metabolismo , Transducción de Señal/fisiología , Estrés Fisiológico/fisiología , Análisis de Varianza , Animales , Fenómenos Biomecánicos , Western Blotting , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Etilmaleimida/farmacología , Técnica del Anticuerpo Fluorescente , Integrina beta1/metabolismo , Masculino , Microscopía Fluorescente , Modelos Biológicos , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Proteínas SNARE/antagonistas & inhibidores , Sarcolema/metabolismo , Resistencia al Corte
15.
Eur Heart J ; 36(13): 795-805a, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23525094

RESUMEN

AIMS: Recent studies have reported a relationship between the abundance of epicardial adipose tissue (EAT) and the risk of cardiovascular diseases including atrial fibrillation (AF). However, the underlying mechanisms are unknown. The aim of this study was to examine the effects of the secretome of human EAT on the histological properties of the myocardium. METHODS AND RESULTS: Samples of EAT and subcutaneous adipose (SAT), obtained from 39 patients undergoing coronary bypass surgery, were analysed and tested in an organo-culture model of rat atria to evaluate the fibrotic properties of human fat depots. The EAT secretome induced global fibrosis (interstitial and peripheral) of rat atria in organo-culture conditions. Activin A was highly expressed in EAT compared with SAT and promoted atrial fibrosis, an effect blocked using neutralizing antibody. In addition, Activin A levels were enhanced in patients with low left-ventricular function. In sections of human atrial and ventricular myocardium, adipose and myocardial tissues were in close contact, together with fibrosis. CONCLUSION: This study provides the first evidence that the secretome from EAT promotes myocardial fibrosis through the secretion of adipo-fibrokines such as Activin A.


Asunto(s)
Adipoquinas/metabolismo , Tejido Adiposo/fisiología , Miocardio/patología , Activinas/metabolismo , Activinas/fisiología , Adipoquinas/fisiología , Animales , Fibrilación Atrial/metabolismo , Fibrilación Atrial/patología , Remodelación Atrial/fisiología , Células Cultivadas , Femenino , Fibrosis/etiología , Fibrosis/patología , Atrios Cardíacos/patología , Humanos , Masculino , Metaloproteinasa 8 de la Matriz/metabolismo , Metaloproteinasa 8 de la Matriz/fisiología , Persona de Mediana Edad , Ratas , Grasa Subcutánea/fisiología
16.
J Magn Reson Imaging ; 42(2): 379-89, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25630749

RESUMEN

BACKGROUND: Left atrium (LA) volumes and function are predictors of cardiovascular events. Because LA function cannot be assessed from cardiovascular magnetic resonance imaging (MRI) using the well-established left ventricular tagging techniques, we hypothesized that adequate feature tracking (FT) applied to conventional cine MRI data could characterize LA function accurately. METHODS: We studied 10 young (28 ± 7 years) and 10 elderly (64 ± 6 years) healthy subjects, as well as 20 patients with moderate to severe aortic valve stenosis (AVS; 73 ± 15 years, effective aortic valve area: 0.67 ± 0.36 cm(2) ). MRI cine two-, three-, and four-chamber views were analyzed using a newly proposed FT method based on spatial correlation and endocardial detection resulting in: regional and global longitudinal strain and strain rate, radial motion fraction and relative velocity for the three LA motion phases including reservoir, conduit, and LA contraction. RESULTS: FT reliability was indicated by a good overlap between tracking results and manual LA endocardial borders, the low error for comparison against theoretical strains introduced in a synthetic phantom and the good inter-observer reproducibility (coefficient of variation < 15%). While all LA functional parameters were significantly impaired in AVS patients (p < 0.04), subclinical age-related variations induced a decreasing trend on all LA parameters but were significant only for radial conduit function parameters (p < 0.03). Finally, LA functional parameters characterized LA alteration in AVS with higher sensitivity than conventional LA volumetric parameters. CONCLUSIONS: Left atrial FT is feasible on MRI cine images and its addition to conventional analysis tools might enhance the diagnosis value of MRI in many heart diseases.


Asunto(s)
Algoritmos , Estenosis de la Válvula Aórtica/patología , Atrios Cardíacos/patología , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Cinemagnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Anciano , Femenino , Humanos , Aumento de la Imagen/métodos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
Arch Cardiovasc Dis ; 117(2): 134-142, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38290892

RESUMEN

BACKGROUND: Left atrial (LA) strain is a simple marker of LA function. The aim of the study was to evaluate the determinants of atrial cardiomyopathy in AF. METHODS: In this pilot study, we prospectively evaluated clinical, biological, metabolomic and echocardiographic parameters for 85 consecutive patients hospitalized for atrial fibrillation (AF) with restoration of sinus rhythm at 6 months. Eighty-one patients with an analysable LA strain at 6 months were divided into groups according to median reservoir strain:<23.3% (n=40) versus≥23.3% (n=41). RESULTS: Compared to patients with the highest LA strain, patients with lowest LA strain had multiple differences at admission: clinical (older age; more frequent history of AF; more patterns of persistent AF); biological (higher fasting blood glucose levels, glycated haemoglobin, high-sensitivity C-reactive protein, and urea; lower glomerular filtration rate); metabolomic (higher levels of kynurenine, kynurenine/tryptophan, and urea/creatinine; lower levels of arginine and methionine/methionine sulfoxide); and echocardiographic (higher two-dimensional end-systolic LA volume [LAV] indexes; higher three-dimensional end-systolic and end-diastolic LAV and right atrial volume indexes; lower LA and right atrial emptying fractions and three-dimensional right ventricular ejection fraction) (all P<0.05). Area under the receiver operating characteristic curve to predict LA strain alteration at 6 months was highest for a combined score including clinical, biological, metabolomic and echocardiographic variables at admission (area under the receiver operating characteristic curve 0.871; P<0.0001). CONCLUSIONS: LA reservoir strain could be a memory of initial atrial myocardial stress in AF. It can be predicted using a combination of clinical, biological, metabolomic and echocardiographic admission variables.


Asunto(s)
Fibrilación Atrial , Humanos , Fibrilación Atrial/diagnóstico por imagen , Volumen Sistólico , Quinurenina , Proyectos Piloto , Función Ventricular Derecha , Atrios Cardíacos/diagnóstico por imagen , Urea
18.
Artículo en Inglés, Español | MEDLINE | ID: mdl-38428580

RESUMEN

Atrial fibrillation (AF) causes progressive structural and electrical changes in the atria that can be summarized within the general concept of atrial remodeling. In parallel, other clinical characteristics and comorbidities may also affect atrial tissue properties and make the atria susceptible to AF initiation and its long-term persistence. Overall, pathological atrial changes lead to atrial cardiomyopathy with important implications for rhythm control. Although there is general agreement on the role of the atrial substrate for successful rhythm control in AF, the current classification oversimplifies clinical management. The classification uses temporal criteria and does not establish a well-defined strategy to characterize the individual-specific degree of atrial cardiomyopathy. Better characterization of atrial cardiomyopathy may improve the decision-making process on the most appropriate therapeutic option. We review current scientific evidence and propose a practical characterization of the atrial substrate based on 3 evaluation steps starting with a clinical evaluation (step 1), then assess outpatient complementary data (step 2), and finally include information from advanced diagnostic tools (step 3). The information from each of the steps or a combination thereof can be used to classify AF patients in 4 stages of atrial cardiomyopathy, which we also use to estimate the success on effective rhythm control.

19.
FASEB J ; 26(3): 1009-17, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22090316

RESUMEN

Recent studies indicate that members of the multidrug-resistance protein (MRP) family belonging to ATP binding cassette type C (ABCC) membrane proteins extrude cyclic nucleotides from various cell types. This study aimed to determine whether MRP proteins regulate cardiac cAMP homeostasis. Here, we demonstrate that MRP4 is the predominant isoform present at the plasma membrane of cardiacmyocytes and that it mediates the efflux of cAMP in these cells. MRP4-deficient mice displayed enhanced cardiac myocyte cAMP formation, contractility, and cardiac hypertrophy at 9 mo of age, an effect that was compensated transiently by increased phosphodiesterase expression at young age. These findings suggest that cAMP extrusion via MRP4 acts together with phosphodiesterases to control cAMP levels in cardiac myocytes.


Asunto(s)
AMP Cíclico/metabolismo , Homeostasis , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Miocitos Cardíacos/metabolismo , 1-Metil-3-Isobutilxantina/farmacología , Animales , Western Blotting , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/genética , Cardiomegalia/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Ecocardiografía , Femenino , Regulación Enzimológica de la Expresión Génica , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Ratones , Ratones Noqueados , Microscopía Confocal , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Contracción Miocárdica/genética , Contracción Miocárdica/fisiología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
20.
Circ Res ; 108(3): 294-304, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21164104

RESUMEN

RATIONALE: The cardiac sodium channel Na(v)1.5 plays a key role in excitability and conduction. The 3 last residues of Na(v)1.5 (Ser-Ile-Val) constitute a PDZ-domain binding motif that interacts with the syntrophin-dystrophin complex. As dystrophin is absent at the intercalated discs, Na(v)1.5 could potentially interact with other, yet unknown, proteins at this site. OBJECTIVE: The aim of this study was to determine whether Na(v)1.5 is part of distinct regulatory complexes at lateral membranes and intercalated discs. METHODS AND RESULTS: Immunostaining experiments demonstrated that Na(v)1.5 localizes at lateral membranes of cardiomyocytes with dystrophin and syntrophin. Optical measurements on isolated dystrophin-deficient mdx hearts revealed significantly reduced conduction velocity, accompanied by strong reduction of Na(v)1.5 at lateral membranes of mdx cardiomyocytes. Pull-down experiments revealed that the MAGUK protein SAP97 also interacts with the SIV motif of Na(v)1.5, an interaction specific for SAP97 as no pull-down could be detected with other cardiac MAGUK proteins (PSD95 or ZO-1). Furthermore, immunostainings showed that Na(v)1.5 and SAP97 are both localized at intercalated discs. Silencing of SAP97 expression in HEK293 and rat cardiomyocytes resulted in reduced sodium current (I(Na)) measured by patch-clamp. The I(Na) generated by Na(v)1.5 channels lacking the SIV motif was also reduced. Finally, surface expression of Na(v)1.5 was decreased in silenced cells, as well as in cells transfected with SIV-truncated channels. CONCLUSIONS: These data support a model with at least 2 coexisting pools of Na(v)1.5 channels in cardiomyocytes: one targeted at lateral membranes by the syntrophin-dystrophin complex, and one at intercalated discs by SAP97.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Distrofina/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Musculares/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Sodio/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Membrana Celular/metabolismo , Células Cultivadas , Conexina 43/metabolismo , Homólogo 1 de la Proteína Discs Large , Distrofina/genética , Proteínas Asociadas a la Distrofina/metabolismo , Silenciador del Gen , Guanilato-Quinasas , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Modelos Animales , Miocitos Cardíacos/citología , Canal de Sodio Activado por Voltaje NAV1.5 , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA