Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Eur J Immunol ; 46(2): 307-18, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26519105

RESUMEN

Numerous studies have focused on the molecular regulation of perforin (PFP) and granzyme B (GZMB) expression by activated cytotoxic T lymphocytes (CTLs), but little is known about the molecular factors that underpin granzyme A (GZMA) expression. In vitro activation of naïve CD8(+) T cells, in the presence of IL-4, enhanced STAT6-dependent GZMA expression and was associated with GATA3 binding and enrichment of transcriptionally permissive histone posttranslational modifications (PTMs) across the Gzma gene locus. While GZMA expression by effector influenza A virus specific CTLs was also associated with a similar permissive epigenetic signature, memory CTL lacked enrichment of permissive histone PTMs at the Gzma locus, although this was restored within recalled secondary effector CTLs. Importantly, GZMA expression by virus-specific CTLs was associated with GATA3 binding at the Gzma locus, and independent of STAT6-mediated signaling. This suggests regulation of GZMA expression is underpinned by differentiation-dependent regulation of chromatin composition at the Gzma locus and that, given GATA3 is key for CTL differentiation in response to infection, GATA3 expression is regulated by a distinct, IL-4 independent, signaling pathway. Overall, this study provides insights into the molecular mechanisms that control transcription of Gzma during virus-induced CD8(+) T-cell differentiation.


Asunto(s)
Factor de Transcripción GATA3/metabolismo , Granzimas/metabolismo , Histonas/metabolismo , Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Antígenos Virales/inmunología , Células Cultivadas , Femenino , Factor de Transcripción GATA3/genética , Granzimas/genética , Memoria Inmunológica , Interleucina-4/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Procesamiento Proteico-Postraduccional , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo , Linfocitos T Citotóxicos/virología
2.
Proc Natl Acad Sci U S A ; 110(14): 5570-5, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23493558

RESUMEN

A reverse-genetics approach has been used to probe the mechanism underlying immune escape for influenza A virus-specific CD8(+) T cells responding to the immunodominant D(b)NP366 epitope. Engineered viruses with a substitution at a critical residue (position 6, P6M) all evaded recognition by WT D(b)NP366-specific CD8(+) T cells, but only the NPM6I and NPM6T mutants altered the topography of a key residue (His155) in the MHC class I binding site. Following infection with the engineered NPM6I and NPM6T influenza viruses, both mutations were associated with a substantial "hole" in the naïve T-cell receptor repertoire, characterized by very limited T-cell receptor diversity and minimal primary responses to the NPM6I and NPM6T epitopes. Surprisingly, following respiratory challenge with a serologically distinct influenza virus carrying the same mutation, preemptive immunization against these escape variants led to the generation of secondary CD8(+) T-cell responses that were comparable in magnitude to those found for the WT NP epitope. Consequently, it might be possible to generate broadly protective T-cell immunity against commonly occurring virus escape mutants. If this is generally true for RNA viruses (like HIV, hepatitis C virus, and influenza) that show high mutation rates, priming against predicted mutants before an initial encounter could function to prevent the emergence of escape variants in infected hosts. That process could be a step toward preserving immune control of particularly persistent RNA viruses and may be worth considering for future vaccine strategies.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Evasión Inmune/genética , Virus de la Influenza A/genética , Virus de la Influenza A/inmunología , Modelos Moleculares , Microglobulina beta-2/química , Animales , Sitios de Unión/genética , Linfocitos T CD8-positivos/virología , Cristalización , Epítopos de Linfocito T/genética , Citometría de Flujo , Genes MHC Clase I/genética , Ratones , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Microglobulina beta-2/inmunología
3.
Proc Natl Acad Sci U S A ; 105(49): 19408-13, 2008 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-19047637

RESUMEN

Understanding T cell immunodominance hierarchies is fundamental to the development of cellular-based vaccines and immunotherapy. A combination of influenza virus infection in C57BL/6J mice and reverse genetics is used here to dissect the role of T cell antigen receptor (TCR) repertoire in the immunodominant D(b)NP(366)CD8(+) T cell response. Infection with an engineered virus (NPM6A) containing a single alanine (A) mutation at the critical p6 NP(366-374) residue induced a noncross-reactive CD8(+) T cell response characterized by a novel, narrower TCR repertoire per individual mouse that was nonetheless equivalent in magnitude to that generated after WT virus challenge. Although of lower overall avidity, the levels of both cytotoxic T lymphocyte activity and cytokine production were comparable with those seen for the native response. Importantly, the overdominance profile characteristic of secondary D(b)NP(366)-specific clonal expansions was retained for the NPM6A mutant. The primary determinants of immunodominance in this endogenous, non-TCR-transgenic model of viral immunity are thus independent of TCR repertoire composition and diversity. These findings both highlight the importance of effective antigen dose for T cell vaccination and/or immunotherapy and demonstrate the feasibility of priming the memory T cell compartment with engineered viruses to protect against commonly selected mutants viral (or tumor) escape mutants.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Epítopos Inmunodominantes/inmunología , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Epítopos/inmunología , Ingeniería Genética , Epítopos Inmunodominantes/metabolismo , Virus de la Influenza A/genética , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo
4.
Front Immunol ; 3: 371, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23267358

RESUMEN

A cardinal feature of adaptive, cytotoxic T lymphocyte (CTL)-mediated immunity is the ability of naïve CTLs to undergo a program of differentiation and proliferation upon activation resulting in the acquisition of lineage-specific T cell functions and eventual establishment of immunological memory. In this review, we examine the molecular factors that shape both the acquisition and maintenance of lineage-specific effector function in virus-specific CTL during both the effector and memory phases of immunity.

5.
PLoS One ; 7(3): e33161, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22470440

RESUMEN

The available evidence suggests that protective immunity to Leishmania is achieved by priming the CD4(+) Th1 response. Therefore, we utilised a reverse genetics strategy to generate influenza A viruses to deliver an immunogenic Leishmania peptide. The single, immunodominant Leishmania-specific LACK(158-173) CD4(+) peptide was engineered into the neuraminidase stalk of H1N1 and H3N2 influenza A viruses. These recombinant viruses were used to vaccinate susceptible BALB/c mice to determine whether the resultant LACK(158-173)-specific CD4(+) T cell responses protected against live L. major infection. We show that vaccination with influenza-LACK(158-173) triggers LACK(158-173)-specific Th1-biased CD4(+) T cell responses within an appropriate cytokine milieu (IFN-γ, IL-12), essential for the magnitude and quality of the Th1 response. A single intraperitoneal exposure (non-replicative route of immunisation) to recombinant influenza delivers immunogenic peptides, leading to a marked reduction (2-4 log) in parasite burden, albeit without reduction in lesion size. This correlated with increased numbers of IFN-γ-producing CD4(+) T cells in vaccinated mice compared to controls. Importantly, the subsequent prime-boost approach with a serologically distinct strain of influenza (H1N1->H3N2) expressing LACK(158-173) led to a marked reduction in both lesion size and parasite burdens in vaccination trials. This protection correlated with high levels of IFN-γ producing cells in the spleen, which were maintained for 6 weeks post-challenge indicating the longevity of this protective effector response. Thus, these experiments show that Leishmania-derived peptides delivered in the context of recombinant influenza viruses are immunogenic in vivo, and warrant investigation of similar vaccine strategies to generate parasite-specific immunity.


Asunto(s)
Antígenos de Protozoos/genética , Linfocitos T CD4-Positivos/inmunología , Leishmania/inmunología , Vacunas contra la Leishmaniasis/administración & dosificación , Vacunas contra la Leishmaniasis/inmunología , Leishmaniasis/prevención & control , Proteínas Protozoarias/genética , Animales , Antígenos de Protozoos/química , Antígenos de Protozoos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Vectores Genéticos/metabolismo , Inmunidad Celular/inmunología , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Interferón gamma/metabolismo , Leishmania/metabolismo , Ratones , Ratones Endogámicos BALB C , Muramidasa/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/inmunología , Vacunación , Vacunas de ADN/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA