Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(22): 12041-12049, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32424098

RESUMEN

Split inteins are privileged molecular scaffolds for the chemical modification of proteins. Though efficient for in vitro applications, these polypeptide ligases have not been utilized for the semisynthesis of proteins in live cells. Here, we biochemically and structurally characterize the naturally split intein VidaL. We show that this split intein, which features the shortest known N-terminal fragment, supports rapid and efficient protein trans-splicing under a range of conditions, enabling semisynthesis of modified proteins both in vitro and in mammalian cells. The utility of this protein engineering system is illustrated through the traceless assembly of multidomain proteins whose biophysical properties render them incompatible with a single expression system, as well as by the semisynthesis of dual posttranslationally modified histone proteins in live cells. We also exploit the domain swapping function of VidaL to effect simultaneous modification and translocation of the nuclear protein HP1α in live cells. Collectively, our studies highlight the VidaL system as a tool for the precise chemical modification of cellular proteins with spatial and temporal control.


Asunto(s)
Inteínas/fisiología , Biosíntesis de Proteínas/fisiología , Ingeniería de Proteínas/métodos , Empalme de Proteína/fisiología , Ingeniería Celular/métodos
2.
Nat Chem Biol ; 13(10): 1081-1087, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28805803

RESUMEN

Lower glycolysis involves a series of reversible reactions, which interconvert intermediates that also feed anabolic pathways. 3-phosphoglycerate (3-PG) is an abundant lower glycolytic intermediate that feeds serine biosynthesis via the enzyme phosphoglycerate dehydrogenase, which is genomically amplified in several cancers. Phosphoglycerate mutase 1 (PGAM1) catalyzes the isomerization of 3-PG into the downstream glycolytic intermediate 2-phosphoglycerate (2-PG). PGAM1 needs to be histidine phosphorylated to become catalytically active. We show that the primary PGAM1 histidine phosphate donor is 2,3-bisphosphoglycerate (2,3-BPG), which is made from the glycolytic intermediate 1,3-bisphosphoglycerate (1,3-BPG) by bisphosphoglycerate mutase (BPGM). When BPGM is knocked out, 1,3-BPG can directly phosphorylate PGAM1. In this case, PGAM1 phosphorylation and activity are decreased, but nevertheless sufficient to maintain normal glycolytic flux and cellular growth rate. 3-PG, however, accumulates, leading to increased serine synthesis. Thus, one biological function of BPGM is controlling glycolytic intermediate levels and thereby serine biosynthetic flux.


Asunto(s)
Ácidos Glicéricos/metabolismo , Fosfoglicerato Mutasa/metabolismo , Serina/metabolismo , Humanos , Fosfoglicerato Mutasa/deficiencia , Células Tumorales Cultivadas
3.
Nat Chem ; 12(6): 520-527, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32472103

RESUMEN

Elucidating the physiological binding partners of histone post-translational modifications (hPTMs) is key to understanding fundamental epigenetic regulatory pathways. Determining such interactomes will enable the study of how perturbations of these interactions affect disease. Here we use a synthetic biology approach to set a series of hPTM-controlled photo-affinity traps in native chromatin. Using quantitative proteomics, the local interactomes of these chemically customized chromatin landscapes are determined. We show that the approach captures transiently interacting factors such as methyltransferases and demethylases, as well as previously reported and novel hPTM reader proteins. We also apply this in situ proteomics approach to a recently disclosed cancer-associated histone mutation, H3K4M, revealing a number of perturbed interactions with the mutated tail. Collectively our studies demonstrate that modifying and interrogating native chromatin with chemical precision is a powerful tool for exploring epigenetic regulation and dysregulation at the molecular level.


Asunto(s)
Cromatina/química , Epigénesis Genética , Histonas/química , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Cromatina/genética , Cromatina/metabolismo , Código de Histonas , Histona Demetilasas/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Metiltransferasas/metabolismo , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Etiquetas de Fotoafinidad
4.
Nat Commun ; 9(1): 4396, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30352998

RESUMEN

New chemical inhibitors of protein-protein interactions are needed to propel advances in molecular pharmacology. Peptoids are peptidomimetic oligomers with the capability to inhibit protein-protein interactions by mimicking protein secondary structure motifs. Here we report the in silico design of a macrocycle primarily composed of peptoid subunits that targets the ß-catenin:TCF interaction. The ß-catenin:TCF interaction plays a critical role in the Wnt signaling pathway which is over-activated in multiple cancers, including prostate cancer. Using the Rosetta suite of protein design algorithms, we evaluate how different macrocycle structures can bind a pocket on ß-catenin that associates with TCF. The in silico designed macrocycles are screened in vitro using luciferase reporters to identify promising compounds. The most active macrocycle inhibits both Wnt and AR-signaling in prostate cancer cell lines, and markedly diminishes their proliferation. In vivo potential is demonstrated through a zebrafish model, in which Wnt signaling is potently inhibited.


Asunto(s)
Compuestos Macrocíclicos/farmacología , Péptidos/farmacología , Peptoides/farmacología , Neoplasias de la Próstata/metabolismo , Factores de Transcripción TCF/metabolismo , beta Catenina/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Embrión no Mamífero/metabolismo , Ojo/embriología , Células HEK293 , Humanos , Masculino , Fenotipo , Neoplasias de la Próstata/patología , Unión Proteica/efectos de los fármacos , Receptores Androgénicos/metabolismo , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Vía de Señalización Wnt , Pez Cebra/embriología
5.
Cancer Res ; 76(17): 5124-32, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27488525

RESUMEN

Development of resistance to antiandrogens for treating advanced prostate cancer is a growing concern and extends to recently developed therapeutics, including enzalutamide. Therefore, new strategies to block androgen receptor (AR) function in prostate cancer are required. Here, we report the characterization of a multivalent conjugate presenting two bioactive ethisterone ligands arrayed as spatially defined pendant groups on a peptoid oligomer. The conjugate, named Multivalent Peptoid Conjugate 6 (MPC6), suppressed the proliferation of multiple AR-expressing prostate cancer cell lines including those that failed to respond to enzalutamide and ARN509. The structure-activity relationships of MPC6 variants were evaluated, revealing that increased spacing between ethisterone moieties and changes in peptoid topology eliminated its antiproliferative effect, suggesting that both ethisterone ligand presentation and scaffold characteristics contribute to MPC6 activity. Mechanistically, MPC6 blocked AR coactivator-peptide interaction and prevented AR intermolecular interactions. Protease sensitivity assays suggested that the MPC6-bound AR induced a receptor conformation distinct from that of dihydrotestosterone- or enzalutamide-bound AR. Pharmacologic studies revealed that MPC6 was metabolically stable and displayed a low plasma clearance rate. Notably, MPC6 treatment reduced tumor growth and decreased Ki67 and AR expression in mouse xenograft models of enzalutamide-resistant LNCaP-abl cells. Thus, MPC6 represents a new class of compounds with the potential to combat treatment-resistant prostate cancer. Cancer Res; 76(17); 5124-32. ©2016 AACR.


Asunto(s)
Antagonistas de Andrógenos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Peptoides/farmacología , Neoplasias de la Próstata/patología , Antagonistas de Andrógenos/química , Animales , Benzamidas , Western Blotting , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Etisterona/metabolismo , Humanos , Inmunohistoquímica , Ligandos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Nitrilos , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Androgénicos/metabolismo , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA