Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Microbiol ; 25(12): 3349-3363, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37861083

RESUMEN

Picocyanobacteria contribute greatly to offshore primary production with cells extending through the deep euphotic zone. Literature indicates high viral infection of cyanobacteria in ocean transition zones. We postulate that the bottom of the euphotic zone is a transition zone, where communities transition from phototrophic to aphotic processes. We use single-copy core genes to examine cyanophage to cyanobacteria ratios in cellular metagenomes in the subtropical North Atlantic and Pacific. Cyanophage to cyanobacteria terL/rpoB ratios generally increase to >10 in the deep euphotic zone. As light levels decrease in the fall, Prochlorococcus in the deep euphotic zone experience reduced light levels. We find clear differences between spring (Geotraces GA02) and fall (GA03) in the North Atlantic, with terL/rpoB ratios increasing to >40 in the fall. When examining 23 months of the North Pacific Hawaii Ocean Timeseries, the depth of elevated cyanophage to cyanobacteria ratios in cellular metagenomes negatively correlated with surface photosynthetic radiation (PAR), particularly with the change in PAR, which reflected the season. In fall, all picocyanobacteria ecotypes were found at depths enriched with viruses, while in summer, only low light ecotypes were affected. Thus, we find high cyanophage infection both in the deep euphotic zone and during seasonal transitions.


Asunto(s)
Cianobacterias , Prochlorococcus , Estaciones del Año , Agua de Mar/microbiología , Fotosíntesis , Cianobacterias/genética , Océano Pacífico , Prochlorococcus/genética
2.
Environ Microbiol ; 24(4): 1790-1804, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34995411

RESUMEN

Ocean oxygen deficient zones (ODZs) host 30%-50% of marine N2 production. Cyanobacteria photosynthesizing in the ODZ create a secondary chlorophyll maximum and provide organic matter to N2 -producing bacteria. This chlorophyll maximum is thought to occur due to reduced grazing in anoxic waters. We first examine ODZ protists with long amplicon reads. We then use non-primer-based methods to examine the composition and relative abundance of protists in metagenomes from the Eastern Tropical North and South Pacific ODZs and compare these data to the oxic Hawaii Ocean Time-series (HOT) in the North Pacific. We identify and quantify protists in proportion to the total microbial community. From metagenomic data, we see a large drop in abundance of fungi and protists such as choanoflagellates, radiolarians, cercozoa and ciliates in the ODZs but not in the oxic mesopelagic at HOT. Diplonemid euglenozoa were the only protists that increased in the ODZ. Dinoflagellates and foraminifera reads were also present in the ODZ though less abundant compared to oxic waters. Denitrification has been found in foraminifera but not yet in dinoflagellates. DNA techniques cannot separate dinoflagellate cells and cysts. Metagenomic analysis found taxonomic groups missed by amplicon sequencing and identified trends in abundance.


Asunto(s)
Foraminíferos , Prochlorococcus , Clorofila , Foraminíferos/genética , Metagenoma , Oxígeno/análisis , Océano Pacífico , Prochlorococcus/genética , Agua de Mar/microbiología
3.
Environ Microbiol ; 23(6): 2782-2800, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32869473

RESUMEN

Cyanophages encode host-derived genes that may increase their fitness. We examined the relative abundance of 18 host-derived cyanophages genes in metagenomes and viromes along depth profiles from the Eastern Tropical North Pacific Oxygen Deficient Zone (ETNP ODZ) where Prochlorococcus dominates a secondary chlorophyll maximum within the ODZ. Cyanophages at the oxic primary chlorophyll maximum encoded genes related to light and phosphate stress (psbA, psbD and pstS in T4-like and psbA in T7-like), but the proportion of cyanophage with these genes decreased with depth. The proportion of cyanophage with purine biosynthesis genes increased with depth in T4-like, but not T7-like cyanophages. No additional host-derived genes were found in deep T7-like cyanophages, suggesting that T4-like and T7-like cyanophages have different host-derived gene acquisition strategies, possibly linked to their different genome packaging mechanisms. In contrast to the ETNP, in the oxic North Atlantic T4-like cyanophages encoded psbA and pstS throughout the euphotic zone. Differences in pstS between the ETNP and the North Atlantic stations were consistent with differences in phosphate concentrations in those regimes. We suggest that the low proportion of cyanophage with psbA within the ODZ reflects the stably stratified low-light conditions occupied by their hosts, a Prochlorococcus ecotype endemic to ODZs.


Asunto(s)
Bacteriófagos , Prochlorococcus , Bacteriófagos/genética , Prochlorococcus/genética , Agua
4.
PeerJ ; 11: e14924, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36874978

RESUMEN

Background: Cyanophages, viruses that infect cyanobacteria, are globally abundant in the ocean's euphotic zone and are a potentially important cause of mortality for marine picocyanobacteria. Viral host genes are thought to increase viral fitness by either increasing numbers of genes for synthesizing nucleotides for virus replication, or by mitigating direct stresses imposed by the environment. The encoding of host genes in viral genomes through horizontal gene transfer is a form of evolution that links viruses, hosts, and the environment. We previously examined depth profiles of the proportion of cyanophage containing various host genes in the Eastern Tropical North Pacific Oxygen Deficient Zone (ODZ) and at the subtropical North Atlantic (BATS). However, cyanophage host genes have not been previously examined in environmental depth profiles across the oceans. Methodology: We examined geographical and depth distributions of picocyanobacterial ecotypes, cyanophage, and their viral-host genes across ocean basins including the North Atlantic, Mediterranean Sea, North Pacific, South Pacific, and Eastern Tropical North and South Pacific ODZs using phylogenetic metagenomic read placement. We determined the proportion of myo and podo-cyanophage containing a range of host genes by comparing to cyanophage single copy core gene terminase (terL). With this large dataset (22 stations), network analysis identified statistical links between 12 of the 14 cyanophage host genes examined here with their picocyanobacteria host ecotypes. Results: Picyanobacterial ecotypes, and the composition and proportion of cyanophage host genes, shifted dramatically and predictably with depth. For most of the cyanophage host genes examined here, we found that the composition of host ecotypes predicted the proportion of viral host genes harbored by the cyanophage community. Terminase is too conserved to illuminate the myo-cyanophage community structure. Cyanophage cobS was present in almost all myo-cyanophage and did not vary in proportion with depth. We used the composition of cobS phylotypes to track changes in myo-cyanophage composition. Conclusions: Picocyanobacteria ecotypes shift with changes in light, temperature, and oxygen and many common cyanophage host genes shift concomitantly. However, cyanophage phosphate transporter gene pstS appeared to instead vary with ocean basin and was most abundant in low phosphate regions. Abundances of cyanophage host genes related to nutrient acquisition may diverge from host ecotype constraints as the same host can live in varying nutrient concentrations. Myo-cyanophage community in the anoxic ODZ had reduced diversity. By comparison to the oxic ocean, we can see which cyanophage host genes are especially abundant (nirA, nirC, and purS) or not abundant (myo psbA) in ODZs, highlighting both the stability of conditions in the ODZ and the importance of nitrite as an N source to ODZ endemic LLV Prochlorococcus.


Asunto(s)
Ecotipo , Genes Virales , Filogenia , Genoma Viral , Cycadopsida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA