Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39173640

RESUMEN

Mammalian membrane proteins perform essential physiologic functions that rely on their accurate insertion and folding at the endoplasmic reticulum (ER). Using forward and arrayed genetic screens, we systematically studied the biogenesis of a panel of membrane proteins, including several G-protein-coupled receptors (GPCRs). We observed a central role for the insertase, the ER membrane protein complex (EMC), and developed a dual-guide approach to identify genetic modifiers of the EMC. We found that the back of Sec61 (BOS) complex, a component of the multipass translocon, was a physical and genetic interactor of the EMC. Functional and structural analysis of the EMC⋅BOS holocomplex showed that characteristics of a GPCR's soluble domain determine its biogenesis pathway. In contrast to prevailing models, no single insertase handles all substrates. We instead propose a unifying model for coordination between the EMC, the multipass translocon, and Sec61 for the biogenesis of diverse membrane proteins in human cells.

2.
Mol Cell ; 81(13): 2693-2704.e12, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33964204

RESUMEN

The assembly of nascent proteins into multi-subunit complexes is a tightly regulated process that must occur at high fidelity to maintain cellular homeostasis. The ER membrane protein complex (EMC) is an essential insertase that requires seven membrane-spanning and two soluble cytosolic subunits to function. Here, we show that the kinase with no lysine 1 (WNK1), known for its role in hypertension and neuropathy, functions as an assembly factor for the human EMC. WNK1 uses a conserved amphipathic helix to stabilize the soluble subunit, EMC2, by binding to the EMC2-8 interface. Shielding this hydrophobic surface prevents promiscuous interactions of unassembled EMC2 and directly competes for binding of E3 ubiquitin ligases, permitting assembly. Depletion of WNK1 thus destabilizes both the EMC and its membrane protein clients. This work describes an unexpected role for WNK1 in protein biogenesis and defines the general requirements of an assembly factor that will apply across the proteome.


Asunto(s)
Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Complejos Multiproteicos/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Retículo Endoplásmico/genética , Células HeLa , Humanos , Complejos Multiproteicos/genética , Proteína Quinasa Deficiente en Lisina WNK 1/genética
3.
Nat Protoc ; 19(1): 127-158, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37974029

RESUMEN

The isolation of proteins in high yield and purity is a major bottleneck for the analysis of their three-dimensional structure, function and interactome. Here, we present a streamlined workflow for the rapid production of proteins or protein complexes using lentiviral transduction of human suspension cells, combined with highly specific nanobody-mediated purification and proteolytic elution. Application of the method requires prior generation of a plasmid coding for a protein of interest (POI) fused to an N- or C-terminal GFP or ALFA peptide tag using a lentiviral plasmid toolkit we have designed. The plasmid is then used to generate human suspension cell lines stably expressing the tagged fusion protein by lentiviral transduction. By leveraging the picomolar affinity of the GFP and ALFA nanobodies for their respective tags, the POI can be specifically captured from the resulting cell lysate even when expressed at low levels and under a variety of conditions, including detergents and mild denaturants. Finally, rapid and specific elution of the POI (in its tagged or untagged form) under native conditions is achieved within minutes at 4 °C, using the engineered SUMO protease SENPEuB. We demonstrate the wide applicability of the method by purifying multiple challenging soluble and membrane protein complexes to high purity from human cells. Our strategy is also directly compatible with many widely used GFP-expression plasmids, cell lines and transgenic model organisms. Finally, our method is faster than alternative approaches, requiring only 8 d from plasmid to purified protein, and results in substantially improved yields and purity.


Asunto(s)
Péptidos , Proteínas , Humanos , Proteolisis , Proteínas Recombinantes de Fusión , Cromatografía de Afinidad/métodos
4.
Artículo en Inglés | MEDLINE | ID: mdl-36041783

RESUMEN

Tail-anchored (TA) proteins are an essential class of integral membrane proteins required for many aspects of cellular physiology. TA proteins contain a single carboxy-terminal transmembrane domain that must be post-translationally recognized, guided to, and ultimately inserted into the correct cellular compartment. The majority of TA proteins begin their biogenesis in the endoplasmic reticulum (ER) and utilize two parallel strategies for targeting and insertion: the guided-entry of tail-anchored proteins (GET) and ER-membrane protein complex (EMC) pathways. Here we focus on how these two sets of machinery target, transfer, and insert TAs into the lipid bilayer in close collaboration with quality control machinery. Additionally, we highlight the unifying features of the insertion process as revealed by recent structures of the GET and EMC membrane protein complexes.


Asunto(s)
Retículo Endoplásmico , Proteínas de la Membrana , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Unión Proteica , Transporte de Proteínas
5.
J Cell Biol ; 222(8)2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37199759

RESUMEN

Tail-anchored (TA) proteins play essential roles in mammalian cells, and their accurate localization is critical for proteostasis. Biophysical similarities lead to mistargeting of mitochondrial TA proteins to the ER, where they are delivered to the insertase, the ER membrane protein complex (EMC). Leveraging an improved structural model of the human EMC, we used mutagenesis and site-specific crosslinking to map the path of a TA protein from its cytosolic capture by methionine-rich loops to its membrane insertion through a hydrophilic vestibule. Positively charged residues at the entrance to the vestibule function as a selectivity filter that uses charge-repulsion to reject mitochondrial TA proteins. Similarly, this selectivity filter retains the positively charged soluble domains of multipass substrates in the cytosol, thereby ensuring they adopt the correct topology and enforcing the "positive-inside" rule. Substrate discrimination by the EMC provides a biochemical explanation for one role of charge in TA protein sorting and protects compartment integrity by limiting protein misinsertion.


Asunto(s)
Retículo Endoplásmico , Proteínas de la Membrana , Proteínas Mitocondriales , Humanos , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas , Conformación Proteica
6.
Science ; 369(6502): 433-436, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32439656

RESUMEN

A defining step in the biogenesis of a membrane protein is the insertion of its hydrophobic transmembrane helices into the lipid bilayer. The nine-subunit endoplasmic reticulum (ER) membrane protein complex (EMC) is a conserved co- and posttranslational insertase at the ER. We determined the structure of the human EMC in a lipid nanodisc to an overall resolution of 3.4 angstroms by cryo-electron microscopy, permitting building of a nearly complete atomic model. We used structure-guided mutagenesis to demonstrate that substrate insertion requires a methionine-rich cytosolic loop and occurs via an enclosed hydrophilic vestibule within the membrane formed by the subunits EMC3 and EMC6. We propose that the EMC uses local membrane thinning and a positively charged patch to decrease the energetic barrier for insertion into the bilayer.


Asunto(s)
Retículo Endoplásmico/química , Membranas Intracelulares/química , Proteínas de la Membrana/química , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA