Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Arch Phys Med Rehabil ; 105(3): 593-603, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37419235

RESUMEN

OBJECTIVE: To assess whether photobiomodulation therapy (PBMT) enhances the benefits of exercise in older adults. DATA SOURCES: PubMed, Scopus, Medline, and Web of Science, dated to February 2023. STUDY SELECTION: All included studies were randomized controlled trials of PBMT combined with exercise co-intervention in persons 60 years and older. OUTCOME MEASURES: Western Ontario and McMaster University Osteoarthritis Index (WOMAC-total, pain, stiffness and function), perceived pain intensity, timed Up and Go (TUG) Test, 6-min walk test (6MWT), muscle strength, and knee range of motion were included. DATA EXTRACTION: Two researchers independently performed data extraction. Article data were extracted in Excel and summarized by a third researcher. DATA SYNTHESIS: The meta-analysis included 14 of the 1864 studies searched in the database. No statistical differences were found between the treatment and control groups in terms of WOMAC-stiffness (mean difference [MD]=-0.31, 95% confidence interval [CI] -0.64 to 0.03), TUG (MD=-0.17, 95% CI -0.71 to 0.38), 6MWT (MD=32.2, 95% CI -44.62 to 109.01), or muscle strength (standardized mean difference=0.24, 95% CI -0.02 to 0.50). However, statistically significant differences were found for WOMAC-total (MD=-6.83, 95% CI -12.3 to -1.37), WOMAC-pain (MD=-2.03, 95% CI -4.06 to -0.01), WOMAC-function (MD=-5.03, 95% CI -9.11 to -0.96), visual analog scale/numeric pain rating scale (MD=-1.24, 95% CI -2.43 to -0.06), and knee range of motion (MD=1.47, 95% CI 0.07 to 2.88). CONCLUSIONS: In older adults who exercise regularly, PBMT can potentially provide additional pain relief, improve knee joint function, and increase knee joint range of motion.


Asunto(s)
Terapia por Luz de Baja Intensidad , Humanos , Anciano , Tolerancia al Ejercicio , Ensayos Clínicos Controlados Aleatorios como Asunto , Articulación de la Rodilla , Dolor
2.
Biochem Biophys Res Commun ; 671: 292-300, 2023 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-37320861

RESUMEN

Aging adipose tissue exhibits elevated inflammation and oxidative stress that are major sources of age-related metabolic dysfunction. However, the exact metabolic changes associated with inflammation and oxidative stress are unclear. To address this topic, we assessed variation in metabolic phenotypes of adipose tissue from 18 months adult sedentary (ASED), 26 months old sedentary (OSED), and 8 months young sedentary (YSED). The results of metabolomic analysis showed that ASED and OSED group had higher palmitic acid, elaidic acid, 1-heptadecanol, and α-tocopherol levels than YSED, but lower sarcosine levels. Furthermore, stearic acid was specifically elevated in ASED compared with YSED. Cholesterol was upregulated specifically in the OSED group compared with YSED, whereas linoleic acid was downregulated. In addition, ASED and OSED had more inflammatory cytokines, lower antioxidant capacity, and higher expression of ferroptosis-related genes than YSED. Moreover, mitochondrial dysfunction associated with abnormal cardiolipin synthesis was more pronounced in the OSED group. In conclusion, both ASED and OSED can affect the FA metabolism and increase oxidative stress in adipose tissue, leading to inflammation. In particular, linoleic acid content specifically decreases in OSED, which associated with abnormal cardiolipin synthesis and mitochondrial dysfunction in adipose tissue.


Asunto(s)
Cardiolipinas , Ferroptosis , Ratas , Femenino , Animales , Cardiolipinas/metabolismo , Ácido Linoleico/metabolismo , Tejido Adiposo/metabolismo , Inflamación/metabolismo , Metabolómica
3.
Biogerontology ; 24(5): 753-769, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37289374

RESUMEN

We investigated the effects of lifelong aerobic exercise and 8 months of detraining after 10 months of aerobic training on circulation, skeletal muscle oxidative stress, and inflammation in aging rats. Sprague-Dawley rats were randomly assigned to the control (CON), detraining (DET), and lifelong aerobic training (LAT) groups. The DET and LAT groups began aerobic treadmill exercise at the age of 8 months and stopped training at the 18th and 26th month, respectively; all rats were sacrificed when aged 26 months. Compared with CON, LAT remarkably decreased serum and aged skeletal muscle 4-hydroxynonenal (4-HNE) and 8-hydroxy-2-deoxyguanosine (8-OHdG) levels. Superoxide dismutase 2(SOD2) levels were higher in the LAT group than in the CON group in skeletal muscle. However, DET remarkably decreased SOD2 protein expression and content in the skeletal muscle and increased malondialdehyde (MDA) level compared with LAT. Compared with LAT, DET remarkably downregulated adiponectin and upregulated tumor necrosis factor alpha (TNF-α) expression, while phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and 70-kDa ribosomal protein S6 kinase (P70S6K) protein expression decreased, and that of FoxO1 and muscle atrophy F-box (MAFbX) proteins increased in the quadriceps femoris. Adiponectin and TNF-α expression in the soleus muscle did not change between groups, whereas that of AKT, mammalian target of rapamycin (mTOR), and P70S6K was lower in the soleus in the DET group than in that in the LAT group. Compared with that in the LAT group, sestrin1 (SES1) and nuclear factor erythroid 2-related factor 2 (Nrf2) protein expression in the DET group was lower, whereas Keap1 mRNA expression was remarkably upregulated in the quadriceps femoris. Interestingly, the protein and mRNA levels of SES1, Nrf2, and Keap1 in soleus muscle did not differ between groups. LAT remarkably upregulated ferritin heavy polypeptide 1(FTH), glutathione peroxidase 4(GPX4), and solute carrier family 7member 11 (SLC7A11) protein expression in the quadriceps femoris and soleus muscles, compared with CON. However, compared with LAT, DET downregulated FTH, GPX4, and SLC7A11 protein expression in the quadriceps femoris and soleus muscles. Long-term detraining during the aging phase reverses the improvement effect of lifelong exercise on oxidative stress, inflammation, ferroptosis, and muscle atrophy in aging skeletal muscle. The quadriceps femoris is more evident than the soleus, which may be related to the different changes in the Keap1/Nrf2 pathway in different skeletal muscles.


Asunto(s)
Ferroptosis , Factor 2 Relacionado con NF-E2 , Ratas , Animales , Ratas Sprague-Dawley , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Adiponectina , Fosfatidilinositol 3-Quinasas , Músculo Esquelético/fisiología , Envejecimiento , Atrofia Muscular/metabolismo , ARN Mensajero/genética , Inflamación/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
4.
Scand J Med Sci Sports ; 33(6): 834-847, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36789636

RESUMEN

Exercise-induced microRNA (miRNA) and HIPPO pathways participate in the regulation of skeletal muscle plasticity but their underlying mechanisms remain unclear. We aimed to investigate the effect of high-intensity interval training (HIIT) on miRNA expression and the HIPPO pathway in the skeletal muscle of aging rats to determine its role in the amelioration of muscle aging. Thirty-six 18-month-old female rats were randomly divided into sedentary control (SED, n = 12), moderate-intensity continuous training (MICT, n = 12), and HIIT (n = 12) groups, with continuous exercise for 8 months. Quantitative reverse transcription-polymerase chain reaction, immunoblotting, KEGG enrichment, and dual-luciferase assays were performed on the target skeletal muscle. Compared with the SED group, the MICT and HIIT groups showed a significant trend of improvement in Lee's index and grip strength and a marked increase in skeletal muscle mitochondrial function, apoptosis, antioxidant, and lipolysis-related protein expression. They also exhibited PI3K/AKT pathway activation and a decrease in expression of HIPPO pathway-related proteins; 20 miRNAs were differentially expressed and enriched in the exercise group compared with the SED group, including the HIPPO pathway and metabolic pathways. Further analysis of L6 cells confirmed that miR-182 may target PTEN, which indirectly regulates HIPPO signaling, but not Mob1. the combined application of HIIT and MICT increased the antioxidant and lipolytic capacities of skeletal muscle and improved atrophy of aging skeletal muscle; HIIT was more effective than MICT. This may be related to HIIT-mediated AKT pathway activation and HIPPO pathway inhibition by miRNAs (miR-486 and miR-182).


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , MicroARNs , Condicionamiento Físico Animal , Ratas , Femenino , Animales , Vía de Señalización Hippo , Antioxidantes/metabolismo , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Condicionamiento Físico Animal/fisiología , Músculo Esquelético/fisiología , Envejecimiento
5.
J Integr Plant Biol ; 63(3): 543-552, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33205908

RESUMEN

Uridine diphosphate-glucosyltransferases (UGTs) maintain abscisic acid (ABA) homeostasis in Arabidopsis thaliana by converting ABA to abscisic acid-glucose ester (ABA-GE). UGT71C5 plays an important role in the generation of ABA-GE. Abscisic acid receptors are crucial upstream components of the ABA signaling pathway, but how UGTs and ABA receptors function together to modulate ABA levels is unknown. Here, we demonstrated that the ABA receptors RCAR12/13 and UGT71C5 maintain ABA homeostasis in Arabidopsis following rehydration under drought stress. Biochemical analyses show that UGT71C5 directly interacted with RCAR8/12/13 in yeast cells, and the interactions between UGT71C5 and RCAR12/13 were enhanced by ABA treatment. Enzyme activity analysis showed that ABA-GE contents were significantly elevated in the presence of RCAR12 or RCAR13, suggesting that these ABA receptors enhance the activity of UGT71C5. Determination of the content of ABA and ABA-GE in Arabidopsis following rehydration under drought stress revealed that ABA-GE contents were significantly higher in Arabidopsis plants overexpressing RCAR12 and RCAR13 than in non-transformed plants and plants overexpressing RCAR11 following rehydration under drought stress. These observations suggest that RCAR12 and RCAR13 enhance the activity of UGT71C5 to glycosylate excess ABA into ABA-GE following rehydration under drought stress, representing a rapid mechanism for regulating plant growth and development.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucosiltransferasas/metabolismo , Homeostasis , Receptores de Superficie Celular/metabolismo , Arabidopsis/genética , Glicosilación , Cinética , Plantas Modificadas Genéticamente , Unión Proteica
6.
Int J Mol Sci ; 20(10)2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31100788

RESUMEN

Drought is a major limiting factor for plant growth and crop productivity. Many Calcineurin B-like interacting protein kinases (CIPKs) play crucial roles in plant adaptation to environmental stresses. It is particularly essential to find the phosphorylation targets of CIPKs and to study the underlying molecular mechanisms. In this study, we demonstrate that CIPK11 acts as a novel component to modulate drought stress in plants. The overexpression of CIPK11 (CIPK11OE) in Arabidopsis resulted in the decreased tolerance of plant to drought stress. When compared to wild type plants, CIPK11OE plants exhibited higher leaf water loss and higher content of reactive oxygen species (ROS) after drought treatment. Additionally, a yeast two hybrid screening assay by using CIPK11 as a bait captures Di19-3, a Cys2/His2-type zinc-finger transcription factor that is involved in drought stress, as a new interactor of CIPK11. Biochemical analysis revealed that CIPK11 interacted with Di19-3 in vivo and it was capable of phosphorylating Di19-3 in vitro. Genetic studies revealed that the function of CIPK11 in regulating drought stress was dependent on Di19-3. The transcripts of stress responsive genes, such as RAB18, RD29A, RD29B, and DREB2A were down-regulated in the CIPK11OE plants. Whereas overexpression of CIPK11 in di19-3 mutant background, expression levels of those marker genes were not significantly altered. Taken together, our results demonstrate that CIPK11 partly mediates the drought stress response by regulating the transcription factor Di19-3.


Asunto(s)
Adaptación Fisiológica/fisiología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sequías , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Fisiológico/fisiología , Adaptación Fisiológica/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Portadoras/metabolismo , Proteínas y Péptidos de Choque por Frío/genética , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Proteínas Serina-Treonina Quinasas/genética , Especies Reactivas de Oxígeno , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma , Técnicas del Sistema de Dos Híbridos , Proteínas de Unión al GTP rab/genética
7.
Int J Mol Sci ; 19(11)2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-30463231

RESUMEN

The plant hormone abscisic acid (ABA) play essential roles in numerous physiological processes such as seed dormancy, seed germination, seeding growth and responses to biotic and abiotic stresses. Such biological processes are tightly controlled by a complicated regulatory network including ABA homoeostasis, signal transduction as well as cross-talking among other signaling pathways. It is known that ABA homoeostasis modulated by its production, inactivation, and transport pathways is considered to be of great importance for plant development and stress responses. Most of the enzymes and transporters involved in ABA homoeostasis have been largely characterized and they all work synergistically to maintain ABA level in plants. Increasing evidence have suggested that transcriptional regulation of the genes involved in either ABA production or ABA inactivation plays vital roles in ABA homoeostasis. In addition to transcription factors, such progress is also regulated by microRNAs and newly characterized root to shoot mobile peptide-receptor like kinase (RLKs) mediated long-distance signal transduction. Thus, ABA contents are always kept in a dynamic balance. In this review, we survey recent research on ABA production, inactivation and transport pathways, and summarize some latest findings about the mechanisms that regulate ABA homoeostasis.


Asunto(s)
Ácido Abscísico/metabolismo , Homeostasis , Desarrollo de la Planta/genética , Estrés Fisiológico/genética , Ácido Abscísico/biosíntesis , Ácido Abscísico/química , Glicosilación , Modelos Biológicos
8.
Plant Sci ; 312: 111017, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34620426

RESUMEN

As a critical second messenger in plants, Ca2+ is involved in numerous biological processes including biotic and abiotic stress responses. The CBL-interacting protein kinases, known as CIPKs, are essential components in Ca2+-mediated signal transduction pathways. Here, we found that CIPK14 plays a role in the process of regulating immune response in Arabidopsis. The CIPK14 loss-of-function mutants exhibited enhanced resistance to the P. syringae, whereas CIPK14 overexpression plants were more susceptible to bacterial pathogen. Enhanced resistance in cipk14 mutants were accompanied by increased accumulation of SA and elevated expression of defense marker genes (PR1, EDS1, EDS5, ICS1). Overexpression of CIPK14 suppressed Pst DC3000, Pst DC3000 hrcC and flg22 induced generation of ROS and callose deposition. As compared with wild type plants, the expression levels of MPK3/6-dependent PTI marker genes (FRK1, CYP81F2, WAK2, FOX) were up-regulated in cipk14 mutants but down-regulated in CIPK14 overexpression plants after flg22 and elf18 treatment. Additionally, both loss-of-function and gain-of-function of CIPK14 significantly altered the phosphorylation status of MPK3/6 under flg22 treatment, suggesting that CIPK14 is a general modulator of plant immunity at both transcriptional and post-transcriptional level. Taken together, our results uncover that CIPK14 acts as a negative regulator in plant immune response.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Inmunidad de la Planta/genética , Inmunidad de la Planta/inmunología , Arabidopsis/metabolismo , Arabidopsis/microbiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Inmunidad/genética , Enfermedades de las Plantas/microbiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Pseudomonas syringae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA