Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Opt ; 61(23): 6736-6743, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36255752

RESUMEN

The purpose of polarization calibration is to obtain the response matrix of an instrument such that the subsequent observation data can be corrected. The calibration precision, however, is partially restricted by the noise of the detector. We investigate the precision of the normalized response matrix in the presence of signal-independent additive noise or signal-dependent Poisson shot noise. The influences of the source intensity, type of noise, and calibration configuration on the precision are analyzed. We compare the theoretical model and the experimental measurements of the polarization calibration to show that the relative difference between the two is less than 16%. From this result, we can use the model to determine the minimum source intensity and choose the optimal configurations that provide the required precision.

2.
Appl Opt ; 61(12): 3349-3356, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35471430

RESUMEN

We present the optomechanical design and development of a wide-field auroral imager (WAI) on board the satellite Fengyun-3D. The optomechanical system of the WAI features a combination of a large field of view and a single-axis scanning mechanism. The combination makes the WAI perform better than its counterparts in temporal resolution in a low Earth orbit. In-orbit tests have verified the survival of WAI in the launching vibration and space environment. It has functioned on-orbit since 2018, with a spatial resolution of ∼10km at the nadir point, at a reference height of 110 km above the ionosphere.

3.
Appl Opt ; 59(30): 9520-9531, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33104672

RESUMEN

The purpose of polarization calibration is to measure the response matrix of an instrument and the deviation of noise to correct for subsequent flight measurements. The precision, however, is relative to the states of incident light. We investigate the influence of partially polarized light, in the presence of signal-independent additive noise or signal-dependent Poisson shot noise. We obtain the estimation precision for different numbers of the polarization state generators and analyzers in linear Stokes measurements. To reduce the influence of incident light, we suggest that the numbers of the polarization state generators and analyzers should be greater than or equal to 4. In particular, for an instrument including three polarizers oriented at 0°, 60°, and 120°, estimation precision is found to be dependent on the response matrix and incident polarization states.

4.
Sensors (Basel) ; 20(20)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096841

RESUMEN

The radiation intensity of observed auroras in the far-ultraviolet (FUV) band varies dramatically with location for aerospace applications, requiring a photon counting imaging apparatus with a wide dynamic range. However, combining high spatial resolution imaging with high event rates is technically challenging. We developed an FUV photon counting imaging system for aurora observation. Our system mainly consists of a microchannel plate (MCP) stack readout using a wedge strip anode (WSA) with charge induction and high-speed electronics, such as a charge sensitive amplifier (CSA) and pulse shaper. Moreover, we constructed an anode readout model and a time response model for readout circuits to investigate the counting error in high counting rate applications. This system supports global rates of 500 kilo counts, 0.610 dark counts s-1 cm-2 at an ambient temperature of 300 K and 111 µm spatial resolution at 400 kilo counts s-1 (kcps). We demonstrate an obvious photon count loss at incident intensities close to the counting capacity of the system. To preserve image quality, the response time should be improved and some noise performance may be sacrificed. Finally, we also describe the correlation between counting rate and imaging resolution, which further guides the design of space observation instruments.

5.
Light Sci Appl ; 11(1): 29, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110521

RESUMEN

The solar X-ray and Extreme Ultraviolet Imager (X-EUVI), which was developed by CIOMP, is China's first space-based solar X-ray and Extreme Ultraviolet (EUV) imager; it has been loaded onto the Fengyun-3E Satellite, which is supported by the China Meteorological Administration (CMA), for solar observation. It commenced working on July 11, 2021, and was used to obtain the first X-ray and EUV images in China. X-EUVI employs an innovation dual band design to monitor a much larger temperature range across the Sun, covering the 0.6-8.0 nm wavelength band of the X-ray region and the 19.5 nm band of the EUV region.

6.
Light Sci Appl ; 11(1): 329, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36414615

RESUMEN

The solar X-ray and Extreme Ultraviolet Imager (X-EUVI), developed by the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences (CIOMP), is the first space-based solar X-ray and Extreme ultraviolet (EUV) imager of China loaded on the Fengyun-3E (FY-3E) satellite supported by the China Meteorological Administration (CMA) for solar observation. Since started work on July 11, 2021, X-EUVI has obtained many solar images. The instrument employs an innovative dual-band design to monitor a much larger temperature range on the Sun, which covers 0.6-8.0 nm in the X-ray region with six channels and 19.5 nm in the EUV region. X-EUVI has a field of view of 42', an angular resolution of 2.5″ per pixel in the EUV band and an angular resolution of 4.1″ per pixel in the X-ray band. The instrument also includes an X-ray and EUV irradiance sensor (X-EUVS) with the same bands as its imaging optics, which measures the solar irradiance and regularly calibrates the solar images. The radiometric calibration of X-EUVS on the ground has been completed, with a calibration accuracy of 12%. X-EUVI is loaded on the FY-3E satellite and rotates relative to the Sun at a uniform rate. Flat-field calibration is conducted by utilizing successive rotation solar images. The agreement between preliminarily processed X-EUVI images and SDO/AIA and Hinode/XRT images indicates that X-EUVI and the data processing algorithm operate properly and that the data from X-EUVI can be applied to the space weather forecast system of CMA and scientific investigations on solar activity.

7.
Light Sci Appl ; 8: 47, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31123586

RESUMEN

The newly launched Fengyun-3D (FY-3D) satellite carried a wide-field auroral imager (WAI) that was developed by Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences (CIOMP), which will provide a large field of view (FOV), high spatial resolution, and broadband ultraviolet images of the aurora and the ionosphere by imaging the N2 LBH bands of emissions. The WAI consists of two identical cameras, each with an FOV of 68° in the along-track direction and 10° in the cross-track direction. The two cameras are tilted relative to each other to cover a fan-shaped field of size 130° × 10°. Each camera consists of an unobstructed four-mirror anastigmatic optical system, a BaF2 filter, and a photon-counting imaging detector. The spatial resolution of WAI is ~10 km at the nadir point at a reference height of 110 km above the Earth's surface. The sensitivity is >0.01 counts s-1 Rayleigh-1 pixel-1 (140-180 nm) for both cameras, which is sufficient for mapping the boundaries and the fine structures of the auroral oval during storms/substorms. Based on the tests and calibrations that were conducted prior to launch, the data processing algorithm includes photon signal decoding, geometric distortion correction, photometric correction, flat-field correction, line-of-sight projection and correction, and normalization between the two cameras. Preliminarily processed images are compared with DMSP SSUSI images. The agreement between the images that were captured by two instruments demonstrates that the WAI and the data processing algorithm operate normally and can provide high-quality scientific data for future studies on auroral dynamics.

8.
Sci Rep ; 5: 8503, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25687255

RESUMEN

Application of π-multilayer technology is extended to high extinction coefficient materials, which is introduced into metal-dielectric filter design. Metal materials often have high extinction coefficients in far ultraviolet (FUV) region, so optical thickness of metal materials should be smaller than that of the dielectric material. A broadband FUV filter of 9-layer non-periodic Al/MgF2 multilayer was successfully designed and fabricated and it shows high reflectance in 140-180 nm, suppressed reflectance in 120-137 nm and 181-220 nm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA