Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Physiol ; 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36946428

RESUMEN

Bacillus subtilis XF-1 is a well-investigated biocontrol agent against the biotrophic Plasmodiophora brassicae Woron., the causal agent of clubroot disease of cruciferous crops. The present study demonstrates that XF-1 could efficiently control clubroot disease via leaf spraying and provides an understanding of the biocontrol mechanisms. High-performance thin-layer chromatography (HTPLC) analysis indicated the presence of fengycin-type cyclopeptides in the supernatant. A ppsB deletion mutant of XF-1 resulted in no fengycin production, significantly reduced the lysis rate of testing spores in vitro and the primary infection rate of root hair in vivo, and decreased the protection value against clubroot disease under the greenhouse conditions. Confocal laser scanning microscopy proved that fengycin was not required for leaf internalization and root colonization. Moreover, the expression level of the ppsB gene in XF-1 was regulated by its cell density in root during interaction with P. brassicae. In addition, the ΔppsB mutant of XF-1 could not efficiently control disease because it led to a lower activation level of the jasmonic acid and salicylic acid signaling pathways in roots, which are necessary for the plant defense reaction upon pathogen invasion. Altogether, the present study provides a new understanding of specific cues in the interaction between B. subtilis and P. brassicae as well as insights into the application of B. subtilis in agriculture.

2.
Crit Rev Biotechnol ; : 1-19, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055183

RESUMEN

Nearly all plants and their organs are inhabited by endophytic microbes which play a crucial role in plant fitness and stress resilience. Harnessing endophytic services can provide effective solutions for a sustainable increase in agriculture productivity and can be used as a complement or alternative to agrochemicals. Shifting agriculture practices toward the use of nature-based solutions can contribute directly to the global challenges of food security and environmental sustainability. However, microbial inoculants have been used in agriculture for several decades with inconsistent efficacy. Key reasons of this inconsistent efficacy are linked to competition with indigenous soil microflora and inability to colonize plants. Endophytic microbes provide solutions to both of these issues which potentially make them better candidates for microbial inoculants. This article outlines the current advancements in endophytic research with special focus on endophytic bacilli. A better understanding of diverse mechanisms of disease control by bacilli is essential to achieve maximum biocontrol efficacy against multiple phytopathogens. Furthermore, we argue that integration of emerging technologies with strong theoretical frameworks have the potential to revolutionize biocontrol approaches based on endophytic microbes.

3.
Plant Dis ; 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37283552

RESUMEN

Wax apple (Syzygium samarangense) is an important fruit tree widely cultivated in China. Yield losses are usually serious due to different diseases among which anthracnose (Colletotrichum spp.) is one of the most damaging (He et al, 2019). This disease was found in Yunnan, China and an average incidence of 56.7% diseased leaves was recorded in21 orchards surveyed in July2021. The disease lesions on leaves were circular, angular or oval (7.2-15.6 mm), with whitish center and brown outer area surrounded by a yellow halo; irregular spots or blight areas formed later. It can also infect fruits forming pale-brown, circular and sunken spots before harvest and rot of stored fruits. Diseased leaves were sampled from orchards in Ximeng (N117.78oE39.89o) and Ninger (E101.04oN23.05o) counties of Yunnan for fungal isolation; three and five pure isolates were recovered from Ximeng (LWTJ1-LWTJ3) and Ninger (LB4-LB8) samples, respectively, by plating disinfested tissue (surface-sterilized with 2% NaClO3) on potato dextrose agar (PDA) followed by hyphal tip purification and incubation at 25oC. Two repeated tests following Koch's postulates were conducted to verify pathogenicity of the eight isolates. In each test, three healthy seedlings per isolate were sprayed with conidia suspenson (2.26×105cfu/mL) until runoff from leaves while control plants were sprayed with sterile water. The plants were kept in the dark at RH100 for 24 h in a black box and then in a growth chamber (28oC, RH>90% and lighting 12h/d). Detached fruits were inoculated with mycelial discs on the puncture-wound surface. Anthracnose symptoms developed on all seedlings and fruits inoculated with LWTJ2 or LB4 isolates, which were re-isolated from lesions of inoculated leaf/fruit, completing Koch's postulates. Control plants were healthy and symptomless. LWTJ2 and LB4 isolates were morphologically the same: the colonies on PDA were circular, pale-white, with cottony surface and readily forming orange conidium masses. The hyphae were hyaline, septate, branched mostly in near right angles. The conidia were hyaline, one-celled, smooth-walled, cylindrical with round ends, 9.8-17.5 (av.13.8) µm×4.4-6.5 (5.6) µm. The teleomorph was not observed in culture or on orchard trees. The morphological characters were consistent with those of C. siamense described by Weir et al (2012). The internal transcribed spacer region (ITS) was amplified from the two isolates by PCR and sequenced (1990) and were 545 bp in length (OL963924 & OL413460). BLAST analysis showed that both were 100% identical and they shared 99.08% identity with C. siamense WZ-365 from the ITS region (MN856443).The Tub2 (788 bp, ON637119) and Cal (768 bp, ON622249) genes (Weir et al, 2012) of LB4 were also obtained and they shared closest identity (99.45% & 100%) with those of C. siamense WZ-365 as well. Phylogenetic tree (neighbor-joining) analysis of the concatenated sequence of ITS, Tub2 and Cal genes of LB4 and those of related Colletotrichum spp. showed that LB4 clustered IN the same end-branch with C. siamense ICMP18578 (Bootstrap sup. = 98%). Thus, C. siamense was identified as the pathogen of wax apple anthracnose in Yunnan. It caused anthracnose on other crops as oranges and cacao (Azad et al, 2020). Also, C. fructicola and C. syzygicola were identified as pathogens of wax apple anthracnose in Thailand (Al-Obaidi et al, 2017). To our knowledge, this is the first report of C. siamense causing wax apple anthracnose in China.

4.
Plant Dis ; 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311233

RESUMEN

Aloe genus plants are perennial evergreen herb belonging to Liliaceae family which is widely used in food, medicine, beauty, and health care (Kumar et al. 2019). In August 2021, symptoms of root and stem rot was observed in approximately 20% of Aloe vera plantings in Yuanjiang County, Yunnan Province, China (23° 64' 53" N, 101° 99' 84" E). The most typical symptoms were stem and root rot, browning and necrosis of vascular tissues, gradual greening, and reddish-browning of leaves from bottom to top, abscission, and eventual plant death (Fig. S1). Therefore, to isolate and identify the pathogen, the plants showing the above symptoms were collected. The plant tissues were cut from the edges of root and stem lesions, followed by disinfection with 75% ethanol for 1 min, rinsed three times with sterilized distilled water, and cut into 3 × 3 mm small squares after excision of marginal tissues. The tissues were transferred to the oomycetes selective medium (Liu et al. 2022) and incubated at 28 °C in the dark for 3~5 days, and suspected colonies were purified. The colonies were then inoculated onto potato dextrose agar (PDA), V8-juice agar (V8), and oatmeal agar (OA) medium plates for morphological characteristics. Finally, 18 isolates with the same colonial and morphological characteristics were obtained from 30 lesioned tissue and one of them was named as ARP1. On PDA, V8 and OA medium plates, the ARP1 colonies were white. On PDA plate, the mycelia were dense and the colonies were petal-like; on V8 plate, the mycelia were cashmere and the colonies were radial or star-like. Whereas, on OA plate, the mycelia were cotton-like and the colonies were fluffy and radial (Fig. S2 A~C). Mycelium did not have septum with high branching and swelling. Sporangia were abundant, semi-papillate, varying in shape from ovoid-ellipsoid to long-ellipsoid, 18-26 × 45-63 µm (average: 22 × 54 µm, n = 30), sporangia released numerous zoospores from the papillate after maturation. The chlamydospores were spherical, 20-35 µm in diameter (average: 27.5 µm, n = 30) (Fig. S2 D~F). These morphological features were like those of the pathogenic species of the oomycetes (Chen et al. 2022). For the molecular characterization, the genomic DNA of the isolate was extracted using the cetyl trimethyl ammonium bromide method, and the translation elongation factor 1α (tef-1α) (Stielow et al. 2015), ß-tubulin (ß-tub) (Kroon et al. 2004) and internal transcribed spacer (ITS) (White et al. 1990) of isolated strain ARP1 were amplified using primer pairs EF1-1018F/EF1-1620R, TUBUF2/TUBUR1 and ITS1/ITS4, respectively. The tef-1α, ß-tub genes and ITS region of ARP1 were directly sequenced and their sequence information was deposited in GenBank under accession numbers OQ506129, OQ506127 and OQ449628. ARP1 was clustered on the same evolutionary branch with Phytophthora palmivora (Fig. S3). To confirm the pathogenicity of ARP1, the main root of A. vera was wounded to 1 cm long and 2 mm deep with a scalpel blade followed by inoculation with 50 ml suspension of ARP1 zoospores at a concentration of 1 × 106 spores / ml per potted plant, and an equal volume of water as control. All inoculated plants were placed in the greenhouse at 28°C, 12 h / 12 h light / dark. After 15 dpi, the inoculated plants showed typical symptoms of wilted and drooping leaves and stem and root rot, same as observed in the field condition (Fig. S4). After inoculation with ARP1, a strain with the same morphological and molecular characteristics as the original isolate was re-isolated, confirming Koch's postulates. To our knowledge, this is the first report of P. palmivora causing root and stem rot of A. vera in the study region. This disease could be a potential risk for aloe production and therefore appropriate management measures should be taken.

5.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37958876

RESUMEN

Aphids are a serious threat to rapeseed (Brassica napus L.) production, and cause unmanageable loss. Therefore, effective prevention and management strategies are urgently required to avoid losses. Bacillus amyloliquefaciens AK-12 isolated from a dead aphid with aphicidal activity was tagged with a green fluorescent protein through a natural transformation. The transformed strains were checked for stability and growth, and the best-performing strain was tested for its colonization inside and outside the rapeseed plant. The stability of AK-12-GFP reached more than 95%, and the growth curve was consistent with that of AK-12. After 30 days of treatment, the colonization of 1 × 106 CFU/g was recorded in rapeseed leaves. Interestingly, AK-12 reduced the aphid transmission rate compared with the control and improved the growth of the rapeseed seedlings. Meanwhile, the AK-12 strain also exhibited phosphorus, potassium-solubilizing, and nitrogen-fixing activity, and produced 2.61 µg/mL of IAA at 24 h. Regulation in the activity of four enzymes was detected after the AK-12 treatment. Phenylalanine ammonia lyase (PAL) was recorded at a maximum of 86.84 U/g after 36 h, and catalase (CAT) decreased after 48 h; however, peroxidase (POD) and polyphenol oxidase (PPO) reached the maximum within 12 h of AK-12 application. Additionally, important resistance genes related to these enzymes were upregulated, indicating the activation of a defense response in the rapeseed against aphids. In conclusion, defense enzymes and defense-related gene activation could improve the pest resistance in rapeseed, which has good application prospects for the future to be developed into biopesticide.


Asunto(s)
Áfidos , Bacillus amyloliquefaciens , Brassica napus , Brassica rapa , Animales , Brassica napus/metabolismo , Áfidos/fisiología , Peroxidasa/metabolismo
6.
Crit Rev Biotechnol ; 42(4): 634-649, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34325576

RESUMEN

Huanglongbing (HLB), a deadly citrus disease which has significantly downsized the entire industry worldwide. The intractable and incurable disease has brought the citriculture an enormous loss of productivity. With no resistant varieties available, failure of chemical treatments despite repeated applications, and hazardous consequences to environmental health, have led to large-scale research to find a sustainable cure. Inside plants, the key determinants of health and safety, live the endophytic microbes. Endophytes possess unrivaled plant benefiting properties. The progression of HLB is known to cause disturbance in endophytic bacterial communities. Given the importance of the plant endophytic microbiome in disease progression, the notion of engineering microbiomes through indigenous endophytes is attracting scientific attention which is considered revolutionary as it precludes the incompatibility concerns associated with the use of alien (microbes from other plant species) endophytes. In this review, we briefly discuss the transformation of the plant-pathogen-environment to the plant-pathogen-microbial system in a disease triangle. We also argue the employment of indigenous endophytes isolated from a healthy state to engineer the diseased citrus endophytic microbiomes that can provide sustainable solution for vascular pathogens. We evaluated the plethora of microbiomes responses to the re-introduction of endophytes which leads to disease resistance in the citrus host. The idea is not merely confined to citrus-HLB, but it is globally applicable for tailoring a customized cure for general plant-pathogen systems particularly for the diseases caused by the vascular system-restricted pathogens.


Asunto(s)
Citrus , Microbiota , Bacterias , Endófitos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control
7.
Plant Dis ; 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35822893

RESUMEN

Bletilla striata is an important Chinese herbal plant grown widely in southwest China (Qian et al. 2021). Leaf blight was found on cultivated bletilla crops in Yunnan in 2021. The disease infected bletilla leaves and it was present in the field from April to November with the highest incidence (86% plants diseased) recorded in early September in Puer area. Foliar lesions were circular (Φ0.5-1.8 cm) or oval, with pale-gray center and narrow gray-brown outer area surrounded by a yellow halo. The lesions coalesced later to form large irregular spots or blighted areas on leaves. Symptomatic bletilla leaves were sampled from fields in Jiangcheng (E101.8672o, N22.5803o) and Simao (E109.7816o, N22.7891o) counties, Yunnan in July 2021. Seven fungal isolates were obtained from (BJ01-BJ04) and Simao samples (HBJ05-HBJ07) via lesion-tissue culture and hypha-tip purification on PDA medium. A pathogenicity test following Koch's Postulates (Grimms et al. 2006) was conducted using each isolate by inoculating 45-day old bletilla plant (n=30, Zihua cultivar) in a greenhouse through spraying hypha-spore suspension (3.25×104 CFU/mL) prepared with 14 d fresh DNA culture. Non-inoculated plants (n=30) were used as controls. The experiment was repeated once. The isolates BJ02 and HBJ06 (deposited in Yunnan Agric. Univ. Microbes Herbarium) were shown pathogenic to bletilla since similar lesions formed on seedlings 7 d post inoculation and pure fungal cultures with the same colony morphology as those of BJ02 and HBJ06 were re-isolated from leaf lesions 14 dpi. Isolates BJ02 and HBJ06 produced identical colony and conidium morphology after they were incubated at 25oC for 7 d on PDA. Colonies were circular, pale brown, Φ5.5-7.5cm, with villous surface and abundant aerial hyphae. Mycelia were septate, colorless, Φ3-4 µm and with acute-angled branches. Conidiophores developed from hyphae were erect, septate, pale-brown colored and 60-200 µm long. Conidia (produced scarcely and ripened slowly) were long-oval or petaloid, straight or slightly curved, brown, sized 28-45×10-14 µm. Most conidia were divided into 4 cells by 3 septa; the middle two were bigger than the basal and apex cells. Both BJ02 and HBJ06 were identified as Curvularia sp. based on their morphological characters (Tan et al. 2018). The rDNA-ITS, TEF1α and GAPDH genes (Tan et al. 2018) were amplified from these isolates with PCR (White et al. 1990) and sequenced. ITS sequences of the two isolates were both 574 bp (acc. no. OL587997 & OL336480) and 100% (574/574 bp) identical shown by blast comparison. Further blast analyses of ITS (574 bp, OL587997), TEF1α (532 bp, ON637120) and GAPDH (881 bp, ON637121) from isolate BJ02 showed that they were 99.27% (547/551 bp), 100% (842/842 bp) and 99.8% (507/508 bp) identical respectively with those of Curvularia reesii BRIP4358 (MH414907). The 3 genes of BJ02 were concatenated and phylogenic analysis (Tamura et al, 2013) of the concatenated sequence with those of Curvularia spp. showed that BJ02 was clustered with C. reesii BRIP4358 on the same end-branch of the tree with 100% confidence. Therefore, BJ02 and HBJ06 are the same species identified as Curvularia reesii and it is the pathogen causing bletilla leaf blight. C. reesii was first isolated from the air in Australia in 1963 and was named by Tan et al. in 2018. It has not been reported as a plant pathogen elsewhere. This is the first record of this fungus causing bletilla leaf blight in China. Keywords: Bletilla striata; leaf blight; Curvularia reesii; disease symptoms; pathogen morphology; multigene identification References (1) D.J. Grimes. Microbes, 1(5): 223-228, 2006. (2) L.H. Qian et al. Jiangshu Agric. Sci. 49(19): 64-71, 2021. (3) K. Tamura et al. Mol. Bio. & Evol. 30 (12): 2725- 2729, 2013. (4) Y. P. Tan et al. MycoKeys, 35: 1-25. 2018. (5) T.J. White et al. In: PCR Protocols: A Guide to Methods and Applications (eds. M.A. Innis et al.), Acad. Press, Inc. New York. 315-322, 1990.

8.
J Basic Microbiol ; 62(8): 937-947, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35554952

RESUMEN

Rhododendron lapponicum (R. lapponicum) is a dwarf Rhododendron species, which is severely infected with root rot and wilt in Yunnan province, China. However, the causal agent causing these symptoms was unknown. An isolate, Pci-1 was identified as Phytophthora cinnamomi, based on its morphology and the sequences of ß-tubulin, internal transcribed spacer, and Ypt1 genes and verified according to the Koch's postulate. We found that this pathogen could infect 14 species of plants, including Althaea rosea, Viburnum cylindricum, and Brassica napus. Strain Pci-1 could cause R. lapponicum to wither and die; and it grows best in an oat medium with pH 7.0 - 8.0 and an optimum temperature of 27°C. We suggest that the rhizosphere of R. lapponicum treated with biocontrol strains Paenibacillus polymyxoides P2-5 and Trichoderma asperellum Tv-1 showed a significant inhibitory effect on pathogen Pci-1. The inhibitory effect of 70% dimethomorph + cymoxanil was significantly higher with EC50 and EC90 values of 0.1894 and 0.3618 a.i. µg/ml, respectively. Greenhouse experiments revealed that the pathogen load is decreased in the presence of potential antagonists. This study provides fundamentals on risk assessment and theoretical support for the management of P. cinnamomi pathogen and contributes significantly to the planting of forest and horticultural crops in a disease-free environment.


Asunto(s)
Phytophthora , Rhododendron , China , Enfermedades de las Plantas/prevención & control , Rizosfera
9.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36555647

RESUMEN

Klebsiella pneumoniae is not only a human and animal opportunistic pathogen, but a food-borne pathogen. Cross-kingdom infection has been focused on since K. pneumoniae was identified as the pathogen of maize, banana, and pomegranate. Although the pathogenicity of K. pneumoniae strains (from ditch water, maize, and human) on plant and mice has been confirmed, there are no reports to explain the molecular mechanisms of the pathogen. This study uncovered the K. pneumoniae KpC4 isolated from maize top rot for the determination of various virulence genes and resistance genes. At least thirteen plant disease-causing genes are found to be involved in the disruption of plant defense. Among them, rcsB is responsible for causing disease in both plants and animals. The novel sequence types provide solid evidence that the pathogen invades plant and has robust ecological adaptability. It is imperative to perform further studies on the verification of these KpC4 genes' functions to understand the molecular mechanisms involved in plant−pathogen interactions.


Asunto(s)
Infección Hospitalaria , Infecciones por Klebsiella , Animales , Ratones , Humanos , Klebsiella pneumoniae , Factores de Virulencia/genética , Zea mays , Virulencia/genética
10.
Opt Lett ; 46(10): 2340-2343, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33988578

RESUMEN

A miniature endoscope capable of imaging multiple tissue contrasts in high resolution is highly attractive, because it can provide complementary and detailed tissue information of internal organs. Here we present a photoacoustic (PA)-fluorescence (FL) endoscope for optical-resolution PA microscopy (PAM) and FL microscopy (FLM). The endoscope with a diameter of 2.8 mm achieves high lateral resolutions of 5.5 and 6.3 µm for PAM and FLM modes, respectively. In vivo imaging of zebrafish larvae and a mouse ear is conducted, and high-quality images are obtained. Additionally, in vivo endoscopic imaging of a rat rectum is demonstrated, showing the endoscopic imaging capability of our endoscope. By providing dual contrasts with high resolution, the endoscope may open up new opportunities for clinical endoscopic imaging applications.


Asunto(s)
Oído/diagnóstico por imagen , Endoscopios , Larva/citología , Animales , Vasos Sanguíneos/diagnóstico por imagen , Vasos Sanguíneos/metabolismo , Oído/irrigación sanguínea , Larva/metabolismo , Sistema Linfático/diagnóstico por imagen , Sistema Linfático/metabolismo , Ratones , Microscopía Fluorescente/métodos , Técnicas Fotoacústicas/métodos , Rodaminas/metabolismo , Análisis Espectral , Pez Cebra
11.
Microb Pathog ; 139: 103906, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31786257

RESUMEN

Klebsiella pneumoniae is an important opportunistic pathogen in humans and animals. Recently, K. pneumoniae KpC4 was identified as a causative agent of bacterial top rot in maize, which has been observed in many areas of Yunnan province, China. KpC4 is potentially dangerous to humans and livestock due to its cross-kingdom infection ability. Our study revealed the disease cycle of maize bacterial top rot caused by KpC4 and the ecological adaptability and host range of KpC4. We found same pathogenicity in maize between KpC4, the environmental strains E1, E4 (K1 serotype), E5, and the clinical strain K. pneumoniae 138 (Kp138). Alternative hosts of K. pneumoniae include not only humans and animals but also a variety of plants (such as maize, banana and sorghum). One of the survival strategies of K. pneumoniae is ecological adaptability, which is an essential factor for KpC4 to be able to cause bacterial top rot in maize. K. pneumoniae, for example, could survive in large numbers (2.34 ± 0.22 × 103 cfu/g) not only in the maize leaves (2.34 ± 0.22 × 103 cfu/g) under natural light, but persist in dried maize plant debris (1.51 × 104 cfu/g) for at least 6 months. K. pneumoniae strains from different sources can generally induce infection in susceptible hosts. Thus, this study revealed the ecological basis of KpC4 cross-kingdom infections, laying the foundation for the study of the mechanisms underlying cross-kingdom infections involving this type of human/animal opportunistic pathogen.


Asunto(s)
Klebsiella pneumoniae/fisiología , Enfermedades de las Plantas/microbiología , Zea mays/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , China , Ecología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/aislamiento & purificación , Klebsiella pneumoniae/metabolismo , Filogenia , Proteínas Virales , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
12.
Microb Ecol ; 76(1): 192-204, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29196843

RESUMEN

Huanglongbing (HLB) is one of the most destructive citrus plant diseases worldwide. It is associated with the fastidious phloem-limited α-proteobacteria 'Candidatus Liberibacter asiaticus', 'Ca. Liberibacter africanus' and 'Ca. Liberibacter americanus'. In recent years, HLB-associated Liberibacters have extended to North and South America. The causal agents of HLB have been putatively identified, and their transmission pathways and worldwide population structure have been extensively studied. However, very little is known about the epidemiologic relationships of Ca. L. asiaticus, which has limited the scope of HLB research and especially the development of control strategies. HLB-affected plants produce damaged fruits and die within several years. To control the disease, scientists have developed new compounds and screened existing compounds for their antibiotic and antimicrobial activities against the disease. These compounds, however, have very little or even no effect on the disease. The aim of the present review was to compile and compare different methods of HLB disease control with newly developed integrative strategies. In light of recent studies, we also describe how to control the vectors of this disease and the biological control of other citrus plant pathogens. This work could steer the attention of scientists towards integrative control strategies.


Asunto(s)
Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Citrus/microbiología , Enfermedades de las Plantas/prevención & control , Rhizobiaceae/efectos de los fármacos , Américas , Agentes de Control Biológico/farmacología , Agentes de Control Biológico/uso terapéutico , Brasinoesteroides/farmacología , Interacciones Huésped-Patógeno , Hipertermia Inducida/métodos , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Rhizobiaceae/clasificación , Rhizobiaceae/patogenicidad , Compuestos Orgánicos Volátiles/farmacología
13.
J Nanosci Nanotechnol ; 16(3): 2365-70, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27455642

RESUMEN

Radiotherapy is an important modality for tumor treatment. The central goal of radiotherapy is to deliver a therapeutic dose to the tumor as much as possible whilst sparing the surrounding normal tissues. On one hand, heavy ion radiation induces maximum damage at the end of the track (called the Bragg Peak). Hadron therapy based on heavy ions is considered superior to conventional X-rays and γ-rays radiations for tumors sited in sensitive tissues, childhood cases and radioresistant cancers. On the other hand, radiation sensitizers enhanced the radiation effects in tumors by increasing the dose specifically to the tumor cells. Recently, the use of gold nanoparticles as potential tumor selective radio-sensitizers has been proposed as a breakthrough in radiotherapy with conventional radiations. The enhanced radiation effect of heavy ions in tumor by using gold nanoparticles as radio-sensitizer may provide alternative in hadron therapy. In this study, we investigated the radiosensitizing effects of carbon ions with a linear energy transfer of 70 keV/µm in the presence of 15 nm citrate-capped AuNPs. The existing of AuNPs resulted in 5.5-fold enhancement in hydroxyl radical production and 24.5% increment in relative biological effectiveness (RBE) values for carbon-ion-irradiated HeLa cells. The study indicated gold nanoparticles can be used as potential radio-sensitizer in carbon ions therapy.


Asunto(s)
Carbono/química , Ácido Cítrico/química , Oro/química , Nanopartículas del Metal , Radioterapia/métodos , Células HeLa , Humanos , Microscopía Electrónica de Transmisión
15.
Pest Manag Sci ; 80(2): 333-340, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37682584

RESUMEN

BACKGROUND: Insect pests negatively affect crop quality and yield. The excessive use of chemical pesticides has serious impacts on the environment and food safety. Therefore, development of effective management strategies in the form of bio-agents have important agricultural applications. Tenebrio molitor, a storage pest, causes losses of grains, medicinal materials, and various agricultural and related products in the warehouse. Bacillus subtilis YZ-1 isolated from naturally deceased Pieris rapae has been found to exhibit significant toxicity against T. molitor. RESULTS: Treatment with B. subtilis YZ-1 fermentation broth resulted in a 90-95% mortality rate of T. molitor within 36 h post-treatment, indicating some active substances may have insecticidal activity in the bacterial supernatant. A bioactivity-guided fractionation method was used to isolate the insecticidal compounds from YZ-1, which led to the identification of surfactins. Additionally, a surfactin deletion mutant YZ-1△srfAA was constructed and the surfactin production by the mutant YZ-1△srfAA was verified through liquid chromatography-mass spectrometry (LC-MS). Further, YZ-1△srfAA exhibited loss of insecticidal activity against T. molitor, Plutella xylostella and Achelura yunnanensis. The insecticidal activity and surfactins contents of several strains of Bacillus sp. were also tested and correlation was found between varying surfactins yield and insecticidal activity exhibited by different strains. CONCLUSION: Conclusively, our results suggest that B. subtilis YZ-1 may provide a novel approach for plant protection against agricultural pests. © 2023 Society of Chemical Industry.


Asunto(s)
Bacillus , Insecticidas , Lepidópteros , Animales , Bacillus subtilis , Insectos , Insecticidas/farmacología
16.
J Fungi (Basel) ; 10(7)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39057379

RESUMEN

Dodder (Cuscuta spp.) is a dangerous parasitic plant that causes serious damage to crop production and is challenging to eliminate. Herbicide application is a common strategy to control dodder in the field, but it is costly, ineffective, and further results in hazardous outcomes. Therefore, our study aims to identify the potential pathogens in naturally occurring dodder infections which may provide efficient biocontrol options. In this regard, the pathogens were isolated from the infected plants, their pathogenicity was validated through inoculation, and the optimal culture conditions for their growth were identified by determining the pathogenicity difference. The pathogenicity range was determined in vitro using the leaves of common horticultural plants and crops. Furthermore, a small range of horticultural plants parasitized by Cuscuta reflexa in the field were inoculated with the pathogen to determine their biosafety and biocontrol potential, and the pathogens were identified by morphological and molecular characterization. We found 7 strains that were isolated after pathogen enrichment culture. Among them, Cbp6 and Cbp7 showed the highest pathogenicity against C. reflexa. After testing the inoculation of more than 50 species of plants, only 9 species showed varying degrees of lesions on leaves, which proved the high biosafety for common plants. Field spraying of these pathogens showed a good control effect on C. reflexa after 21 days; the disease severityreached 66.0%, while its host plant did not display obvious symptoms. In conclusion, the pathogens Cbp6 and Cbp7 were identified as Alternaria alternata, and the results of this study provide a theoretical basis for the biological control of dodder.

17.
Phys Eng Sci Med ; 47(2): 703-715, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38416372

RESUMEN

Dose verification of treatment plans is an essential step in radiotherapy workflows. In this work, we propose a novel method of treatment planning based on nanodosimetric quantity-weighted dose (NQWD), which could realize biological representation using pure physical quantities for biological-oriented carbon ion-beam treatment plans and their direct verification. The relationship between nanodosimetric quantities and relative biological effectiveness (RBE) was studied with the linear least-squares method for carbon-ion radiation fields. Next, under the framework of the matRad treatment planning platform, NQWD was optimized using the existing RBE-weighted dose (RWD) optimization algorithm. The schemes of NQWD-based treatment planning were compared with the RWD treatment plans in term of the microdosimetric kinetic model (MKM). The results showed that the nanodosimetric quantity F3 - 10 had a good correlation with the radiobiological effect reflected by the relationship between RBE and F3 - 10. Moreover, the NQWD-based treatment plans reproduced the RWD plans generally. Therefore, F3 - 10 could be adopted as a radiation quality descriptor for carbon-ion treatment planning. The novel method proposed herein not only might be helpful for rapid physical verification of biological-oriented ion-beam treatment plans with the development of experimental nanodosimetry, but also makes the direct comparison of ion-beam treatment plans in different institutions possible. Thus, our proposed method might be potentially developed to be a new strategy for carbon-ion treatment planning and improve patient safety for carbon-ion radiotherapy.


Asunto(s)
Carbono , Radioterapia de Iones Pesados , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Carbono/química , Humanos , Radiometría , Nanotecnología , Efectividad Biológica Relativa , Algoritmos , Relación Dosis-Respuesta en la Radiación
18.
Environ Int ; 173: 107819, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36842382

RESUMEN

Agriculture-related manufactured nano-objects (MNOs) can revolutionize the crop production and help to achieve sustainable development goals. MNOs with diverse physico-chemical properties and ability to encapsulate and deliver active ingredients in controlled, targeted and stimuli responsive manner can enhance the efficiency while minimizing collateral damage to non-target organisms and environment. Application of MNOs in the form of nanopesticides and nanofertilizers is known to affect soil microbial communities both positively and negatively, but detailed studies with varying dose, type and environmental conditions are scarce. Therefore, it is imperative to understand the complex mechanisms and factors which shape the MNOs-microbial interactions through integrating state of the art technologies including omics (transcriptomics, metabolomics, and proteomics), artificial intelligence, and statistical frameworks. Lastly, we propose the idea of MNOs-mediated manipulation of soil microbiome to modify the soil microbial communities for improved microbial services. These microbial services, if harnessed appropriately, can revolutionize modern agriculture and help in achieving sustainable development goals.


Asunto(s)
Microbiota , Suelo , Inteligencia Artificial , Agricultura , Proteómica , Microbiología del Suelo
19.
J Fungi (Basel) ; 9(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36675893

RESUMEN

Endophytic fungi are used as the most common microbial biological control agents (MBCAs) against phytopathogens and are ubiquitous in all plant parts. Most of the fungal species have roles against a variety of plant pathogens. Fungal endophytes provide different services to be used as pathogen control agents, using an important aspect in the form of enhanced plant growth and induced systemic resistance, produce a variety of antifungal secondary metabolites (lipopeptides, antibiotics and enzymes) through colonization, and compete with other pathogenic microorganisms for growth factors (space and nutrients). The purpose of this review is to highlight the biological control potential of fungal species with antifungal properties against different fungal plant pathogens. We focused on the introduction, biology, isolation, identification of endophytic fungi, and their antifungal activity against fungal plant pathogens. The endosymbionts have developed specific genes that exhibited endophytic behavior and demonstrated defensive responses against pathogens such as antibiosis, parasitism, lytic enzyme and competition, siderophore production, and indirect responses by induced systemic resistance (ISR) in the host plant. Finally, different microscopic detection techniques to study microbial interactions (endophytic and pathogenic fungal interactions) in host plants are briefly discussed.

20.
Nanoscale ; 15(27): 11544-11559, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37366254

RESUMEN

Photoacoustic (PA) imaging using contrast agents with strong near-infrared-II (NIR-II, 1000-1700 nm) absorption enables deep penetration into biological tissue. Besides, biocompatibility and biodegradability are essential for clinical translation. Herein, we developed biocompatible and biodegradable germanium nanoparticles (GeNPs) with high photothermal stability as well as strong and broad absorption for NIR-II PA imaging. We first demonstrate the excellent biocompatibility of the GeNPs through experiments, including the zebrafish embryo survival rates, nude mouse body weight curves, and histological images of the major organs. Then, comprehensive PA imaging demonstrations are presented to showcase the versatile imaging capabilities and excellent biodegradability, including in vitro PA imaging which can bypass blood absorption, in vivo dual-wavelength PA imaging which can clearly distinguish the injected GeNPs from the background blood vessels, in vivo and ex vivo PA imaging with deep penetration, in vivo time-lapse PA imaging of a mouse ear for observing biodegradation, ex vivo time-lapse PA imaging of the major organs of a mouse model for observing the biodistribution after intravenous injection, and notably in vivo dual-modality fluorescence and PA imaging of osteosarcoma tumors. The in vivo biodegradation of GeNPs is observed not only in the normal tissue but also in the tumor, making the GeNPs a promising candidate for clinical NIR-II PA imaging applications.


Asunto(s)
Germanio , Nanopartículas , Técnicas Fotoacústicas , Ratones , Animales , Medios de Contraste/farmacología , Técnicas Fotoacústicas/métodos , Distribución Tisular , Pez Cebra , Fototerapia/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA