Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 36(4): 881-898, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37941457

RESUMEN

Double fertilization in many flowering plants (angiosperms) often occurs during the hot summer season, but the mechanisms that enable angiosperms to adapt specifically to high temperatures are largely unknown. The actin cytoskeleton is essential for pollen germination and the polarized growth of pollen tubes, yet how this process responds to high temperatures remains unclear. Here, we reveal that the high thermal stability of 11 Arabidopsis (Arabidopsis thaliana) actin-depolymerizing factors (ADFs) is significantly different: ADFs that specifically accumulate in tip-growing cells (pollen and root hairs) exhibit high thermal stability. Through ancestral protein reconstruction, we found that subclass II ADFs (expressed specifically in pollen) have undergone a dynamic wave-like evolution of the retention, loss, and regeneration of thermostable sites. Additionally, the sites of AtADF7 with high thermal stability are conserved in ADFs specific to angiosperm pollen. Moreover, the high thermal stability of ADFs is required to regulate actin dynamics and turnover at high temperatures to promote pollen germination. Collectively, these findings suggest strategies for the adaptation of sexual reproduction to high temperature in angiosperms at the cell biology level.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Temperatura , Germinación/genética , Arabidopsis/metabolismo , Polen/metabolismo , Tubo Polínico
2.
PLoS Pathog ; 20(1): e1011946, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38198506

RESUMEN

Pseudomonas aeruginosa is a highly pathogenic bacterium known for its ability to sense and coordinate the production of virulence factors in response to host immune responses. However, the regulatory mechanisms underlying this process have remained largely elusive. In this study, we investigate the two-component system CprRS in P. aeruginosa and unveil the crucial role of the sensor protein CprS in sensing the human host defense peptide LL-37, thereby modulating bacterial virulence. We demonstrate that CprS acts as a phosphatase in the presence of LL-37, leading to the phosphorylation and activation of the response regulator CprR. The results prove that CprR directly recognizes a specific sequence within the promoter region of the HigBA toxin-antitoxin system, resulting in enhanced expression of the toxin HigB. Importantly, LL-37-induced HigB expression promotes the production of type III secretion system effectors, leading to reduced expression of proinflammatory cytokines and increased cytotoxicity towards macrophages. Moreover, mutations in cprS or cprR significantly impair bacterial survival in both macrophage and insect infection models. This study uncovers the regulatory mechanism of the CprRS system, enabling P. aeruginosa to detect and respond to human innate immune responses while maintaining a balanced virulence gene expression profile. Additionally, this study provides new evidence and insights into the complex regulatory system of T3SS in P. aeruginosa within the host environment, contributing to a better understanding of host-microbe communication and the development of novel strategies to combat bacterial infections.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/metabolismo , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/microbiología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Virulencia , Sistemas de Secreción Tipo III/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
3.
Appl Environ Microbiol ; 90(4): e0174323, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38470180

RESUMEN

Soil and rhizosphere bacteria act as a rich source of secondary metabolites, effectively fighting against a diverse array of pathogens. Certain Pseudomonas species harbor biosynthetic gene clusters for producing both pyoluteorin and 2,4-diacetylphloroglucinol (2,4-DAPG), which are polyketides that exhibit highly similar antimicrobial spectrum against bacteria and fungi or oomycete. A complex cross talk exists between pyoluteorin and 2,4-DAPG biosynthesis, and production of 2,4-DAPG was strongly repressed by pyoluteorin, yet the underlying mechanism is still elusive. In this study, we find that the TetR family transcription factor PhlH is involved in the cross talk between pyoluteorin and 2,4-DAPG biosynthesis. PhlH binds to a palindromic sequence within the promoter of phlG (PphlG), which encodes a C-C bond hydrolase responsible for degrading 2,4-DAPG. As a signaling molecule, pyoluteorin disrupts the PhlH-PphlG complex by binding to PhlH, leading to decreased levels of 2,4-DAPG. Proteomics data suggest that pyoluteorin regulates multiple physiological processes including fatty acid biosynthesis and transportation of taurine, siderophore, and amino acids. Our work not only reveals a novel mechanism of cross talk between pyoluteorin and 2,4-DAPG biosynthesis, but also highlights pyoluteorin's role as a messenger in the complex communication network of Pseudomonas.IMPORTANCEAntibiosis serves as a crucial defense mechanism for microbes against invasive bacteria and resource competition. These bacteria typically orchestrate the production of multiple antibiotics in a coordinated fashion, wherein the synthesis of one antibiotic inhibits the generation of another. This strategic coordination allows the bacterium to focus its resources on producing the most advantageous antibiotic under specific circumstances. However, the underlying mechanisms of distinct antibiotic production in bacterial cells remain largely elusive. In this study, we reveal that the TetR family transcription factor PhlH detects the secondary metabolite pyoluteorin and mediates the cross talk between pyoluteorin and 2,4-DAPG biosynthesis in the biocontrol strain Pseudomonas protegens Pf-5. These findings hold promise for future research, potentially informing the manipulation of these systems to enhance the effectiveness of biocontrol agents.


Asunto(s)
Fenoles , Floroglucinol/análogos & derivados , Pseudomonas fluorescens , Pirroles , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas/metabolismo , Antibacterianos/farmacología , Pseudomonas fluorescens/genética
4.
Environ Res ; 249: 118402, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309560

RESUMEN

Microcystins (MC)-RR is a significant analogue of MC-LR, which has been identified as a hepatotoxin capable of influencing lipid metabolism and promoting the progression of liver-related metabolic diseases. However, the toxicity and biological function of MC-RR are still not well understood. In this study, the toxic effects and its role in lipid metabolism of MC-RR were investigated in hepatoblastoma cells (HepG2cells). The results demonstrated that MC-RR dose-dependently reduced cell viability and induced apoptosis. Additionally, even at low concentrations, MC-RR promoted lipid accumulation through up-regulating levels of triglyceride, total cholesterol, phosphatidylcholines and phosphatidylethaolamine in HepG2 cells, with no impact on cell viability. Proteomics and transcriptomics analysis further revealed significant alterations in the protein and gene expression profiles in HepG2 cells treated with MC-RR. Bioinformatic analysis, along with subsequent validation, indicated the upregulation of CD36 and activation of the AMPK and PI3K/AKT/mTOR in response to MC-RR exposure. Finally, knockdown of CD36 markedly ameliorated MC-RR-induced lipid accumulation in HepG2 cells. These findings collectively suggest that MC-RR promotes lipid accumulation in HepG2 cells through CD36-mediated signal pathway and fatty acid uptake. Our findings provide new insights into the hepatotoxic mechanism of MC-RR.


Asunto(s)
Antígenos CD36 , Ácidos Grasos , Metabolismo de los Lípidos , Microcistinas , Transducción de Señal , Humanos , Células Hep G2 , Antígenos CD36/metabolismo , Antígenos CD36/genética , Metabolismo de los Lípidos/efectos de los fármacos , Microcistinas/toxicidad , Transducción de Señal/efectos de los fármacos , Ácidos Grasos/metabolismo , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos
5.
Nucleic Acids Res ; 50(18): 10586-10600, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36200834

RESUMEN

Type II toxin-antitoxin (TA) systems are widely distributed in bacterial and archaeal genomes and are involved in diverse critical cellular functions such as defense against phages, biofilm formation, persistence, and virulence. GCN5-related N-acetyltransferase (GNAT) toxin, with an acetyltransferase activity-dependent mechanism of translation inhibition, represents a relatively new and expanding family of type II TA toxins. We here describe a group of GNAT-Xre TA modules widely distributed among Pseudomonas species. We investigated PacTA (one of its members encoded by PA3270/PA3269) from Pseudomonas aeruginosa and demonstrated that the PacT toxin positively regulates iron acquisition in P. aeruginosa. Notably, other than arresting translation through acetylating aminoacyl-tRNAs, PacT can directly bind to Fur, a key ferric uptake regulator, to attenuate its DNA-binding affinity and thus permit the expression of downstream iron-acquisition-related genes. We further showed that the expression of the pacTA locus is upregulated in response to iron starvation and the absence of PacT causes biofilm formation defect, thereby attenuating pathogenesis. Overall, these findings reveal a novel regulatory mechanism of GNAT toxin that controls iron-uptake-related genes and contributes to bacterial virulence.


Asunto(s)
Antitoxinas , Toxinas Bacterianas , Acetiltransferasas/metabolismo , Antitoxinas/genética , Antitoxinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Homeostasis/genética , Hierro/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
6.
J Biol Chem ; 298(6): 102027, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35568198

RESUMEN

The production of secondary metabolites is a major mechanism used by beneficial rhizobacteria to antagonize plant pathogens. These bacteria have evolved to coordinate the production of different secondary metabolites due to the heavy metabolic burden imposed by secondary metabolism. However, for most secondary metabolites produced by bacteria, it is not known how their biosynthesis is coordinated. Here, we showed that PhlH from the rhizobacterium Pseudomonas fluorescens is a TetR-family regulator coordinating the expression of enzymes related to the biosynthesis of several secondary metabolites, including 2,4-diacetylphloroglucinol (2,4-DAPG), mupirocin, and pyoverdine. We present structures of PhlH in both its apo form and 2,4-DAPG-bound form and elucidate its ligand-recognizing and allosteric switching mechanisms. Moreover, we found that dissociation of 2,4-DAPG from the ligand-binding domain of PhlH was sufficient to allosterically trigger a pendulum-like movement of the DNA-binding domains within the PhlH dimer, leading to a closed-to-open conformational transition. Finally, molecular dynamics simulations confirmed that two distinct conformational states were stabilized by specific hydrogen bonding interactions and that disruption of these hydrogen bonds had profound effects on the conformational transition. Our findings not only reveal a well-conserved route of allosteric signal transduction in TetR-family regulators but also provide novel mechanistic insights into bacterial metabolic coregulation.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Pseudomonas fluorescens , Transducción de Señal , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Enlace de Hidrógeno , Ligandos , Mupirocina/metabolismo , Oligopéptidos/metabolismo , Floroglucinol/metabolismo , Conformación Proteica , Pseudomonas fluorescens/metabolismo , Metabolismo Secundario
7.
Antimicrob Agents Chemother ; 67(11): e0081223, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37877694

RESUMEN

Type II toxin-antitoxin systems are highly prevalent in bacterial genomes and play crucial roles in the general stress response. Previously, we demonstrated that the type II antitoxin PfMqsA regulates biofilm formation through the global regulator AgtR in Pseudomonas fluorescens. Here, we found that both the C-terminal DNA-binding domain of PfMqsA and AgtR are involved in bacterial antibiotic susceptibility. Electrophoretic mobility shift assay (EMSA) analyses revealed that AgtR, rather than PfMqsA, binds to the intergenic region of emhABC-emhR, in which emhABC encodes an resistance-nodulation-cell division efflux pump and emhR encodes a repressor. Through quantitative real-time reverse-transcription PCR and EMSA analysis, we showed that AgtR directly activates the expression of the emhR by binding to the DNA motif [5´-CTAAGAAATATACTTAC-3´], leading to repression of the emhABC. Furthermore, we demonstrated that PfMqsA modulates the expression of EmhABC and EmhR. These findings enhance our understanding of the mechanism by which antitoxin PfMqsA contributes to antibiotic susceptibility.


Asunto(s)
Antitoxinas , Pseudomonas fluorescens , Pseudomonas fluorescens/genética , Antibacterianos/farmacología , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
8.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835382

RESUMEN

Targeting of the PD-1/PD-L1 immunologic checkpoint is believed to have provided a real breakthrough in the field of cancer therapy in recent years. Due to the intrinsic limitations of antibodies, the discovery of small-molecule inhibitors blocking PD-1/PD-L1 interaction has gradually opened valuable new avenues in the past decades. In an effort to discover new PD-L1 small molecular inhibitors, we carried out a structure-based virtual screening strategy to rapidly identify the candidate compounds. Ultimately, CBPA was identified as a PD-L1 inhibitor with a KD value at the micromolar level. It exhibited effective PD-1/PD-L1 blocking activity and T-cell-reinvigoration potency in cell-based assays. CBPA could dose-dependently elevate secretion levels of IFN-γ and TNF-α in primary CD4+ T cells in vitro. Notably, CBPA exhibited significant in vivo antitumor efficacy in two different mouse tumor models (a MC38 colon adenocarcinoma model and a melanoma B16F10 tumor model) without the induction of observable liver or renal toxicity. Moreover, analyses of the CBPA-treated mice further showed remarkably increased levels of tumor-infiltrating CD4+ and CD8+ T cells and cytokine secretion in the tumor microenvironment. A molecular docking study suggested that CBPA embedded relatively well into the hydrophobic cleft formed by dimeric PD-L1, occluding the PD-1 interaction surface of PD-L1. This study suggests that CBPA could work as a hit compound for the further design of potent inhibitors targeting the PD-1/PD-L1 pathway in cancer immunotherapy.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Receptor de Muerte Celular Programada 1 , Animales , Ratones , Adenocarcinoma/metabolismo , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/metabolismo , Neoplasias del Colon/metabolismo , Simulación del Acoplamiento Molecular , Receptor de Muerte Celular Programada 1/metabolismo , Microambiente Tumoral , Inhibidores de Puntos de Control Inmunológico/química , Inhibidores de Puntos de Control Inmunológico/farmacología
9.
PLoS Biol ; 17(8): e3000371, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31433808

RESUMEN

Inhibitory glycinergic transmission in adult spinal cord is primarily mediated by glycine receptors (GlyRs) containing the α1 subunit. Here, we found that α1ins, a longer α1 variant with 8 amino acids inserted into the intracellular large loop (IL) between transmembrane (TM)3 and TM4 domains, was expressed in the dorsal horn of the spinal cord, distributed at inhibitory synapses, and engaged in negative control over nociceptive signal transduction. Activation of metabotropic glutamate receptor 5 (mGluR5) specifically suppressed α1ins-mediated glycinergic transmission and evoked pain sensitization. Extracellular signal-regulated kinase (ERK) was critical for mGluR5 to inhibit α1ins. By binding to a D-docking site created by the 8-amino-acid insert within the TM3-TM4 loop of α1ins, the active ERK catalyzed α1ins phosphorylation at Ser380, which favored α1ins ubiquitination at Lys379 and led to α1ins endocytosis. Disruption of ERK interaction with α1ins blocked Ser380 phosphorylation, potentiated glycinergic synaptic currents, and alleviated inflammatory and neuropathic pain. These data thus unraveled a novel, to our knowledge, mechanism for the activity-dependent regulation of glycinergic neurotransmission.


Asunto(s)
Células del Asta Posterior/metabolismo , Receptores de Glicina/metabolismo , Animales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glicina/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Fosforilación , Receptor del Glutamato Metabotropico 5/metabolismo , Receptor del Glutamato Metabotropico 5/fisiología , Receptores de Glicina/fisiología , Transducción de Señal/fisiología , Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Columna Vertebral/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
10.
Environ Microbiol ; 23(4): 2054-2069, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33314494

RESUMEN

Indole is well known as an interspecies signalling molecule to modulate bacterial physiology; however, it is not clear how the indole signal is perceived and responded to by plant growth promoting rhizobacteria (PGPR) in the rhizosphere. Here, we demonstrated that indole enhanced the antibiotic tolerance of Pseudomonas fluorescens 2P24, a PGPR well known for its biocontrol capacity. Proteomic analysis revealed that indole influenced the expression of multiple genes including the emhABC operon encoding a major multidrug efflux pump. The expression of emhABC was regulated by a TetR-family transcription factor EmhR, which was demonstrated to be an indole-responsive regulator. Molecular dynamics simulation showed that indole allosterically affected the distance between the two DNA-recognizing helices within the EmhR dimer, leading to diminished EmhR-DNA interaction. It was further revealed the EmhR ortholog in Pseudomonas syringae was also responsible for indole-induced antibiotic tolerance, suggesting this EmhR-dependent, indole-induced antibiotic tolerance is likely to be conserved among Pseudomonas species. Taken together, our results elucidated the molecular mechanism of indole-induced antibiotic tolerance in Pseudomonas species and had important implications on how rhizobacteria sense and respond to indole in the rhizosphere.


Asunto(s)
Pseudomonas fluorescens , Antibacterianos/farmacología , Indoles , Proteómica , Pseudomonas , Pseudomonas fluorescens/genética
11.
Environ Microbiol ; 23(3): 1541-1558, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33346387

RESUMEN

Type II toxin-antitoxin (TA) systems modulate many essential cellular processes in prokaryotic organisms. Recent studies indicate certain type II antitoxins also transcriptionally regulate other genes, besides neutralizing toxin activity. Herein, we investigated the diverse transcriptional repression properties of type II TA antitoxin PaHigA from Pseudomonas aeruginosa. Biochemical and functional analyses showed that PaHigA recognized variable pseudopalindromic DNA sequences and repressed expression of multiple genes. Furthermore, we presented high resolution structures of apo-PaHigA, PaHigA-PhigBA and PaHigA-Ppa2440 complex, describing how the rearrangements of the HTH domain accounted for the different DNA-binding patterns among HigA homologues. Moreover, we demonstrated that the N-terminal loop motion of PaHigA was associated with its apo and DNA-bound states, reflecting a switch mechanism regulating HigA antitoxin function. Collectively, this work extends our understanding of how the PaHigB/HigA system regulates multiple metabolic pathways to balance the growth and stress response in P. aeruginosa and could guide further development of anti-TA oriented strategies for pathogen treatment.


Asunto(s)
Antitoxinas , Sistemas Toxina-Antitoxina , Antitoxinas/genética , Proteínas Bacterianas/genética , Motivos de Nucleótidos , Pseudomonas aeruginosa/genética
12.
Mol Plant Microbe Interact ; 33(12): 1411-1423, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32924759

RESUMEN

A wide variety of leguminous plant-released (iso)flavonoids, such as genistein, are potential inducers of the nodulation (nod) genes of endosymbiotic rhizobia for the production of Nod factors, which are vital signaling molecules for triggering the symbiotic process. However, these (iso)flavonoids are generally thought to be toxic to the bacterial partner to varying degrees. Here, a novel TetR-like regulator gene of the soybean symbiont Bradyrhizobium diazoefficiens USDA110, bdtR (systematic designation blr7023), was characterized. It was found to be rapidly and preferentially induced by genistein, and its mutation resulted in significantly increased expression of the neighboring bll7019-bll7021 genes, encoding a multidrug resistance efflux pump system, in the absence of this isoflavonoid. Then, the transcriptional start site of BdtR was determined, and it was revealed that BdtR acted as a transcriptional repressor of the above efflux system through the binding of an AT-rich operator, which could be completely prevented by genistein. In addition, the ΔbdtR deletion mutant strain showed higher accumulation of extracellular genistein and became less susceptible to the isoflavonoid. In contrast, the inactivation of BdtR led to the significantly decreased induction of a nodulation gene (nodY) independent of the expression of nodD1 and nodW and to much weaker nodulation competitiveness. Taken together, the results show that BdtR plays an early sensing role in maintaining the intracellular homeostasis of genistein, helping to alleviate its toxic effect on this bacterium by negatively regulating neighboring genes encoding an efflux pump system while being essentially required for nodule occupancy competitiveness.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Bradyrhizobium , Genisteína , Glycine max , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bradyrhizobium/efectos de los fármacos , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Regulación Bacteriana de la Expresión Génica , Genisteína/farmacología , Glycine max/metabolismo , Glycine max/microbiología , Simbiosis
13.
Environ Microbiol ; 22(12): 5073-5089, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32363709

RESUMEN

In the well-known legume-rhizobia symbiosis, flavonoids released by legume roots induce expression of the Nod factors and trigger early plant responses involved in root nodulation. However, it remains largely unknown how the plant-derived flavonoids influence the physiology of non-symbiotic beneficial rhizobacteria. In this work, we demonstrated that the flavonoids apigenin and/or phloretin enhanced the swarming motility and production of cellulose and curli in Pseudomonas fluorescens 2P24, both traits of which are essential for root colonization. Using a label-free quantitative proteomics approach, we showed that apigenin and phloretin significantly reduced the biosynthesis of the antifungal metabolite 2,4-DAPG and further identified a novel flavonoid-sensing TetR regulator PhlH, which was shown to modulate 2,4-DAPG production by regulating the expression of 2,4-DAPG hydrolase PhlG. Although having similar structures, apigenin and phloretin could also influence different physiological characteristics of P. fluorescens 2P24, with apigenin decreasing the biofilm formation and phloretin inducing expression of proteins involved in the denitrification and arginine fermentation processes. Taken together, our results suggest that plant-derived flavonoids could be sensed by the TetR regulator PhlH in P. fluorescens 2P24 and acts as important signalling molecules that strengthen mutually beneficial interactions between plants and non-symbiotic beneficial rhizobacteria.


Asunto(s)
Antifúngicos/metabolismo , Flavonoides/farmacología , Floroglucinol/análogos & derivados , Raíces de Plantas/microbiología , Pseudomonas fluorescens/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Locomoción/efectos de los fármacos , Locomoción/genética , Floroglucinol/metabolismo , Raíces de Plantas/química , Pseudomonas fluorescens/metabolismo , Pseudomonas fluorescens/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Plant Cell ; 29(2): 395-408, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28123105

RESUMEN

Functional divergence in paralogs is an important genetic source of evolutionary innovation. Actin-depolymerizing factors (ADFs) are among the most important actin binding proteins and are involved in generating and remodeling actin cytoskeletal architecture via their conserved F-actin severing or depolymerizing activity. In plants, ADFs coevolved with actin, but their biochemical properties are diverse. Unfortunately, the biochemical function of most plant ADFs and the potential mechanisms of their functional divergence remain unclear. Here, in vitro biochemical analyses demonstrated that all 11 ADF genes in Arabidopsis thaliana exhibit opposing biochemical properties. Subclass III ADFs evolved F-actin bundling (B-type) function from conserved F-actin depolymerizing (D-type) function, and subclass I ADFs have enhanced D-type function. By tracking historical mutation sites on ancestral proteins, several fundamental amino acid residues affecting the biochemical functions of these proteins were identified in Arabidopsis and various plants, suggesting that the biochemical divergence of ADFs has been conserved during the evolution of angiosperm plants. Importantly, N-terminal extensions on subclass III ADFs that arose from intron-sliding events are indispensable for the alteration of D-type to B-type function. We conclude that the evolution of these N-terminal extensions and several conserved mutations produced the diverse biochemical functions of plant ADFs from a putative ancestor.


Asunto(s)
Factores Despolimerizantes de la Actina/fisiología , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Evolución Biológica , Factores Despolimerizantes de la Actina/genética , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Modelos Moleculares , Filogenia
15.
Environ Microbiol ; 21(5): 1740-1756, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30680880

RESUMEN

The mqsRA operon encodes a toxin-antitoxin pair that was characterized to participate in biofilm and persister cell formation in Escherichia coli. Notably, the antitoxin MqsA possesses a C-terminal DNA-binding domain that recognizes the [5'-AACCT(N)2-4 AGGTT-3'] motif and acts as a transcriptional regulator controlling multiple genes including the general stress response regulator RpoS. However, it is unknown how the transcriptional circuits of MqsA homologues have changed in bacteria over evolutionary time. Here, we found mqsA in Pseudomonas fluorescens (PfmqsA) is acquired through horizontal gene transfer and binds to a slightly different motif [5'-TACCCT(N)3 AGGGTA-3'], which exists upstream of the PfmqsRA operon. Interestingly, an adjacent GntR-type transcriptional regulator, which was termed AgtR, is under negative control of PfMqsA. It was further demonstrated that PfMqsA reduces production of biofilm components through AgtR, which directly regulates the pga and fap operons involved in the synthesis of extracellular polymeric substances. Moreover, through quantitative proteomics analysis, we showed AgtR is a highly pleiotropic regulator that influences up to 252 genes related to diverse processes including chemotaxis, oxidative phosphorylation and carbon and nitrogen metabolism. Taken together, our findings suggest the rewired regulatory circuit of PfMqsA influences diverse physiological aspects of P. fluorescens 2P24 via the newly characterized AgtR.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pseudomonas fluorescens/metabolismo , Antitoxinas/genética , Antitoxinas/metabolismo , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Operón , Pseudomonas fluorescens/genética
16.
Plant Physiol ; 174(3): 1881-1896, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28461403

RESUMEN

The identification and characterization of a mutational spectrum for a specific protein can help to elucidate its detailed cellular functions. BRASSINOSTEROID INSENSITIVE1 (BRI1), a multidomain transmembrane receptor-like kinase, is a major receptor of brassinosteroids in Arabidopsis (Arabidopsis thaliana). Within the last two decades, over 20 different bri1 mutant alleles have been identified, which helped to determine the significance of each domain within BRI1. To further understand the molecular mechanisms of BRI1, we tried to identify additional alleles via targeted induced local lesions in genomes. Here, we report our identification of 83 new point mutations in BRI1, including nine mutations that exhibit an allelic series of typical bri1 phenotypes, from subtle to severe morphological alterations. We carried out biochemical analyses to investigate possible mechanisms of these mutations in affecting brassinosteroid signaling. A number of interesting mutations have been isolated via this study. For example, bri1-702, the only weak allele identified so far with a mutation in the activation loop, showed reduced autophosphorylation activity. bri1-705, a subtle allele with a mutation in the extracellular portion, disrupts the interaction of BRI1 with its ligand brassinolide and coreceptor BRI1-ASSOCIATED RECEPTOR KINASE1. bri1-706, with a mutation in the extracellular portion, is a subtle defective mutant. Surprisingly, root inhibition analysis indicated that it is largely insensitive to exogenous brassinolide treatment. In this study, we found that bri1-301 possesses kinase activity in vivo, clarifying a previous report arguing that kinase activity may not be necessary for the function of BRI1. These data provide additional insights into our understanding of the early events in the brassinosteroid signaling pathway.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Mutagénesis/genética , Mutación/genética , Proteínas Quinasas/genética , Alelos , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Brasinoesteroides/farmacología , Secuencia Conservada , Genes Dominantes , Prueba de Complementación Genética , Simulación de Dinámica Molecular , Fenotipo , Fosforilación/efectos de los fármacos , Proteínas Quinasas/química , Estructura Secundaria de Proteína , Transducción de Señal/efectos de los fármacos , Esteroides Heterocíclicos/farmacología
17.
Appl Environ Microbiol ; 83(21)2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28821548

RESUMEN

Certain strains of biocontrol bacterium Pseudomonas fluorescens produce the secondary metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) to antagonize soilborne phytopathogens in the rhizosphere. The gene cluster responsible for the biosynthesis of 2,4-DAPG is named phlACBDEFGH and it is still unclear how the pathway-specific regulator phlH within this gene cluster regulates the metabolism of 2,4-DAPG. Here, we found that PhlH in Pseudomonas fluorescens strain 2P24 represses the expression of the phlG gene encoding the 2,4-DAPG hydrolase by binding to a sequence motif overlapping with the -35 site recognized by σ70 factors. Through biochemical screening of PhlH ligands we identified the end product 2,4-DAPG and its biosynthetic intermediate monoacetylphloroglucinol (MAPG), which can act as signaling molecules to modulate the binding of PhlH to the target sequence and activate the expression of phlG Comparison of 2,4-DAPG production between the ΔphlH, ΔphlG, and ΔphlHG mutants confirmed that phlH and phlG impose negative feedback regulation over 2,4-DAPG biosynthesis. It was further demonstrated that the 2,4-DAPG degradation catalyzed by PhlG plays an insignificant role in 2,4-DAPG tolerance but contributes to bacterial growth advantages under carbon/nitrogen starvation conditions. Taken together, our data suggest that by monitoring and down-tuning in situ levels of 2,4-DAPG, the phlHG genes could dynamically modulate the metabolic loads attributed to 2,4-DAPG production and potentially contribute to rhizosphere adaptation.IMPORTANCE 2,4-DAPG, which is synthesized by biocontrol pseudomonad bacteria, is a broad-spectrum antibiotic against bacteria, fungi, oomycetes, and nematodes and plays an important role in suppressing soilborne plant pathogens. Although most of the genes in the 2,4-DAPG biosynthetic gene cluster (phl) have been characterized, it is still not clear how the pathway-specific regulator phlH is involved in 2,4-DAPG metabolism. This work revealed the role of PhlH in modulating 2,4-DAPG levels by controlling the expression of 2,4-DAPG hydrolase PhlG in response to 2,4-DAPG and MAPG. Since 2,4-DAPG biosynthesis imposes a metabolic burden on biocontrol pseudomonads, it is expected that the fine regulation of phlG by PhlH offers a way to dynamically modulate the metabolic loads attributed to 2,4-DAPG production.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Floroglucinol/análogos & derivados , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Vías Biosintéticas , Hidrolasas/genética , Hidrolasas/metabolismo , Floroglucinol/metabolismo , Pseudomonas fluorescens/enzimología , Factores de Transcripción/genética , Transcripción Genética
18.
J Comput Aided Mol Des ; 31(12): 1053-1062, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29159521

RESUMEN

Conformational conversion of the normal cellular prion protein, PrPC, into the misfolded isoform, PrPSc, is considered to be a central event in the development of fatal neurodegenerative diseases. Stabilization of prion protein at the normal cellular form (PrPC) with small molecules is a rational and efficient strategy for treatment of prion related diseases. However, few compounds have been identified as potent prion inhibitors by binding to the normal conformation of prion. In this work, to rational screening of inhibitors capable of stabilizing cellular form of prion protein, multiple approaches combining docking-based virtual screening, steady-state fluorescence quenching, surface plasmon resonance and thioflavin T fluorescence assay were used to discover new compounds interrupting PrPC to PrPSc conversion. Compound 3253-0207 that can bind to PrPC with micromolar affinity and inhibit prion fibrillation was identified from small molecule databases. Molecular dynamics simulation indicated that compound 3253-0207 can bind to the hotspot residues in the binding pocket composed by ß1, ß2 and α2, which are significant structure moieties in conversion from PrPC to PrPSc.


Asunto(s)
Priones , Evaluación Preclínica de Medicamentos , Simulación de Dinámica Molecular , Fármacos Neuroprotectores/química , Enfermedades por Prión/tratamiento farmacológico , Priones/antagonistas & inhibidores , Priones/metabolismo , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie
19.
Proc Natl Acad Sci U S A ; 107(28): 12487-92, 2010 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-20616047

RESUMEN

2-oxogluatarate (2-OG), a metabolite of the highly conserved Krebs cycle, not only plays a critical role in metabolism, but also constitutes a signaling molecule in a variety of organisms ranging from bacteria to plants and animals. In cyanobacteria, the accumulation of 2-OG constitutes the signal of nitrogen starvation and NtcA, a global transcription factor, has been proposed as a putative receptor for 2-OG. Here we present three crystal structures of NtcA from the cyanobacterium Anabaena: the apoform, and two ligand-bound forms in complex with either 2-OG or its analogue 2,2-difluoropentanedioic acid. All structures assemble as homodimers, with each subunit composed of an N-terminal effector-binding domain and a C-terminal DNA-binding domain connected by a long helix (C-helix). The 2-OG binds to the effector-binding domain at a pocket similar to that used by cAMP in catabolite activator protein, but with a different pattern. Comparative structural analysis reveals a putative signal transmission route upon 2-OG binding. A tighter coiled-coil conformation of the two C-helices induced by 2-OG is crucial to maintain the proper distance between the two F-helices for DNA recognition. Whereas catabolite activator protein adopts a transition from off-to-on state upon cAMP binding, our structural analysis explains well why NtcA can bind to DNA even in its apoform, and how 2-OG just enhances the DNA-binding activity of NtcA. These findings provided the structural insights into the function of a global transcription factor regulated by 2-OG, a metabolite standing at a crossroad between carbon and nitrogen metabolisms.


Asunto(s)
Ácidos Cetoglutáricos/metabolismo , Nitrógeno/metabolismo , Factores de Transcripción/metabolismo , Anabaena/genética , Anabaena/metabolismo , Anabaena/fisiología , Animales , Cianobacterias/genética , Cianobacterias/metabolismo , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Ácidos Cetoglutáricos/farmacología , Compuestos Nitrosos , Unión Proteica/genética , Estructura Secundaria de Proteína/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología , Tiazolidinas , Factores de Transcripción/química , Factores de Transcripción/genética
20.
J Hazard Mater ; 460: 132512, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37703740

RESUMEN

Pseudomonas aeruginosa, a versatile bacterium, has dual significance because of its beneficial roles in environmental soil processes and its detrimental effects as a nosocomial pathogen that causes clinical infections. Understanding adaptability to environmental stress is essential. This investigation delves into the complex interplay of two-component system (TCS), specifically ParRS and CprRS, as P. aeruginosa interprets host signals and navigates stress challenges. In this study, through phenotypic and proteomic analyses, the nuanced contributions of ParRS and CprRS to the pathogenesis and resilience mechanisms were elucidated. Furthermore, the indispensable roles of the ParS and CprS extracellular sensor domains in orchestrating signal perception remain unknown. Structural revelations imply a remarkable convergence of TCS sensors in interacting with host peptides, suggesting evolutionary strategies for bacterial adaptation. This pioneering work not only established links between cationic antimicrobial peptide (CAMP) resistance-associated TCSs and virulence modulation in nosocomial bacteria, but also transcended conventional boundaries. These implications extend beyond clinical resistance, permeating into the realm of soil revitalization and environmental guardianship. As it unveils P. aeruginosa intricacies, this study assumes a mantle of guiding strategies to mitigate clinical hazards, harness environmental advantages, and propel sustainable solutions forward.


Asunto(s)
Infección Hospitalaria , Pseudomonas aeruginosa , Humanos , Virulencia , Proteómica , Péptidos , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA