Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 518
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 56(10): 2342-2357.e10, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37625409

RESUMEN

The heart is an autoimmune-prone organ. It is crucial for the heart to keep injury-induced autoimmunity in check to avoid autoimmune-mediated inflammatory disease. However, little is known about how injury-induced autoimmunity is constrained in hearts. Here, we reveal an unknown intramyocardial immunosuppressive program driven by Tbx1, a DiGeorge syndrome disease gene that encodes a T-box transcription factor (TF). We found induced profound lymphangiogenic and immunomodulatory gene expression changes in lymphatic endothelial cells (LECs) after myocardial infarction (MI). The activated LECs penetrated the infarcted area and functioned as intramyocardial immune hubs to increase the numbers of tolerogenic dendritic cells (tDCs) and regulatory T (Treg) cells through the chemokine Ccl21 and integrin Icam1, thereby inhibiting the expansion of autoreactive CD8+ T cells and promoting reparative macrophage expansion to facilitate post-MI repair. Mimicking its timing and implementation may be an additional approach to treating autoimmunity-mediated cardiac diseases.

2.
Nature ; 631(8021): 663-669, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961290

RESUMEN

The Warburg effect is a hallmark of cancer that refers to the preference of cancer cells to metabolize glucose anaerobically rather than aerobically1,2. This results in substantial accumulation of lacate, the end product of anaerobic glycolysis, in cancer cells3. However, how cancer metabolism affects chemotherapy response and DNA repair in general remains incompletely understood. Here we report that lactate-driven lactylation of NBS1 promotes homologous recombination (HR)-mediated DNA repair. Lactylation of NBS1 at lysine 388 (K388) is essential for MRE11-RAD50-NBS1 (MRN) complex formation and the accumulation of HR repair proteins at the sites of DNA double-strand breaks. Furthermore, we identify TIP60 as the NBS1 lysine lactyltransferase and the 'writer' of NBS1 K388 lactylation, and HDAC3 as the NBS1 de-lactylase. High levels of NBS1 K388 lactylation predict poor patient outcome of neoadjuvant chemotherapy, and lactate reduction using either genetic depletion of lactate dehydrogenase A (LDHA) or stiripentol, a lactate dehydrogenase A inhibitor used clinically for anti-epileptic treatment, inhibited NBS1 K388 lactylation, decreased DNA repair efficacy and overcame resistance to chemotherapy. In summary, our work identifies NBS1 lactylation as a critical mechanism for genome stability that contributes to chemotherapy resistance and identifies inhibition of lactate production as a promising therapeutic cancer strategy.


Asunto(s)
Proteínas de Ciclo Celular , Resistencia a Antineoplásicos , Ácido Láctico , Proteínas Nucleares , Reparación del ADN por Recombinación , Animales , Femenino , Humanos , Masculino , Ratones , Ácido Anhídrido Hidrolasas/metabolismo , Anaerobiosis , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Inestabilidad Genómica , Ácido Láctico/metabolismo , Lisina/química , Lisina/metabolismo , Lisina Acetiltransferasa 5/metabolismo , Lisina Acetiltransferasa 5/genética , Proteína Homóloga de MRE11/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/genética , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Organoides , Glucólisis , Terapia Neoadyuvante , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/deficiencia , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Anticonvulsivantes/farmacología
3.
Nature ; 607(7917): 163-168, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768509

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) shows pronounced epithelial and mesenchymal cancer cell populations1-4. Cellular heterogeneity in PDAC is an important feature in disease subtype specification3-5, but how distinct PDAC subpopulations interact, and the molecular mechanisms that underlie PDAC cell fate decisions, are incompletely understood. Here we identify the BMP inhibitor GREM16,7 as a key regulator of cellular heterogeneity in pancreatic cancer in human and mouse. Grem1 inactivation in established PDAC in mice resulted in a direct conversion of epithelial into mesenchymal PDAC cells within days, suggesting that persistent GREM1 activity is required to maintain the epithelial PDAC subpopulations. By contrast, Grem1 overexpression caused an almost complete 'epithelialization' of highly mesenchymal PDAC, indicating that high GREM1 activity is sufficient to revert the mesenchymal fate of PDAC cells. Mechanistically, Grem1 was highly expressed in mesenchymal PDAC cells and inhibited the expression of the epithelial-mesenchymal transition transcription factors Snai1 (also known as Snail) and Snai2 (also known as Slug) in the epithelial cell compartment, therefore restricting epithelial-mesenchymal plasticity. Thus, constant suppression of BMP activity is essential to maintain epithelial PDAC cells, indicating that the maintenance of the cellular heterogeneity of pancreatic cancer requires continuous paracrine signalling elicited by a single soluble factor.


Asunto(s)
Transición Epitelial-Mesenquimal , Péptidos y Proteínas de Señalización Intercelular , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Células Epiteliales/patología , Transición Epitelial-Mesenquimal/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mesodermo/patología , Ratones , Neoplasias Pancreáticas/patología , Factores de Transcripción de la Familia Snail
4.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36572651

RESUMEN

Immune checkpoint inhibitors (ICI) show high efficiency in a small fraction of advanced gastric cancer (GC). However, personalized immune subtypes have not been developed for the prediction of ICI efficiency in GC. Herein, we identified Pan-Immune Activation Module (PIAM), a curated gene expression profile (GEP) representing the co-infiltration of multiple immune cell types in tumor microenvironment of GC, which was associated with high expression of immunosuppressive molecules such as PD-1 and CTLA-4. We also identified Pan-Immune Dysfunction Genes (PIDG), a conservative PIAM-derivated GEP indicating the dysfunction of immune cell cooperation, which was associated with upregulation of metastatic programs (extracellular matrix receptor interaction, TGF-ß signaling, epithelial-mesenchymal transition and calcium signaling) but downregulation of proliferative signalings (MYC targets, E2F targets, mTORC1 signaling, and DNA replication and repair). Moreover, we developed 'GSClassifier', an ensemble toolkit based on top scoring pairs and extreme gradient boosting, for population-based modeling and personalized identification of GEP subtypes. With PIAM and PIDG, we developed four Pan-immune Activation and Dysfunction (PAD) subtypes and a GSClassifier model 'PAD for individual' with high accuracy in predicting response to pembrolizumab (anti-PD-1) in advance GC (AUC = 0.833). Intriguingly, PAD-II (PIAMhighPIDGlow) displayed the highest objective response rate (60.0%) compared with other subtypes (PAD-I, PIAMhighPIDGhigh, 0%; PAD-III, PIAMlowPIDGhigh, 0%; PAD-IV, PIAMlowPIDGlow, 17.6%; P = 0.003), which was further validated in the metastatic urothelial cancer cohort treated with atezolizumab (anti-PD-L1) (P = 0.018). In all, we provided 'GSClassifier' as a refined computational framework for GEP-based stratification and PAD subtypes as a promising strategy for exploring ICI responders in GC. Metastatic pathways could be potential targets for GC patients with high immune infiltration but resistance to ICI therapy.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Aprendizaje Automático , Microambiente Tumoral
5.
Carcinogenesis ; 45(5): 337-350, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38400766

RESUMEN

The role of RNA methylation is vital in the advancement and spread of tumors. However, its exact role in microsatellite instability in colorectal cancer (CRC) is still not fully understood. To address this gap in knowledge, this study investigated the impact of genes associated with RNA methylation on the prognosis and response to immunotherapy in individuals diagnosed with low microsatellite instability (MSI-L) or microsatellite stable (MSS) CRC. The differentially expressed genes (DEGs) in two groups of patients: those with high microsatellite instability (MSI-H) and those with MSI-L/MSS was thoroughly investigated and compared with aims of exploring the association between them and the 60 RNA methylation regulators. We employed these genes and developed an MSI-RMscore to establish a risk signature capable of forecasting patient outcomes. Furthermore, an investigation of the immunophenotypic traits was conducted encompassing patients categorized as high-risk and low-risk. By combining the MSI-RMscore and clinicopathological features, a predictive nomogram was developed, which was subsequently validated using the GEO database. Furthermore, immunohistochemistry was employed to establish the correlation between INHBB and SOWAHA and the MSI status, as well as patient prognosis. Our findings indicated that the high-risk subgroup exhibited unfavorable overall survival rates, reduced responsiveness to immune checkpoint blockers, elevated estimate scores, and increased infiltration of macrophages and fibroblasts. We also confirmed that INHBB and SOWAHA were associated with CRC patient prognosis and MSI status, as well as immunotherapy response. These findings suggest that targeting INHBB and SOWAHA could be a promising strategy to enhance patient responsiveness to immunotherapy.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Inmunoterapia , Inestabilidad de Microsatélites , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Pronóstico , Biomarcadores de Tumor/genética , Inmunoterapia/métodos , Femenino , Masculino , Persona de Mediana Edad , Nomogramas , Metilación de ADN , Metilación de ARN
6.
Mol Cancer ; 23(1): 124, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849840

RESUMEN

BACKGROUND: Intestinal metaplasia (IM) is classified into complete intestinal metaplasia (CIM) and incomplete intestinal metaplasia (IIM). Patients diagnosed with IIM face an elevated susceptibility to the development of gastric cancer, underscoring the critical need for early screening measures. In addition to the complexities associated with diagnosis, the exact mechanisms driving the progression of gastric cancer in IIM patients remain poorly understood. OLFM4 is overexpressed in several types of tumors, including colorectal, gastric, pancreatic, and ovarian cancers, and its expression has been associated with tumor progression. METHODS: In this study, we used pathological sections from two clinical centers, biopsies of IM tissues, precancerous lesions of gastric cancer (PLGC) cell models, animal models, and organoids to explore the role of OLFM4 in IIM. RESULTS: Our results show that OLFM4 expression is highly increased in IIM, with superior diagnostic accuracy of IIM when compared to CDX2 and MUC2. OLFM4, along with MYH9, was overexpressed in IM organoids and PLGC animal models. Furthermore, OLFM4, in combination with Myosin heavy chain 9 (MYH9), accelerated the ubiquitination of GSK3ß and resulted in increased ß-catenin levels through the Wnt signaling pathway, promoting the proliferation and invasion abilities of PLGC cells. CONCLUSIONS: OLFM4 represents a novel biomarker for IIM and could be utilized as an important auxiliary means to delimit the key population for early gastric cancer screening. Finally, our study identifies cell signaling pathways involved in the progression of IM.


Asunto(s)
Progresión de la Enfermedad , Glucógeno Sintasa Quinasa 3 beta , Metaplasia , Cadenas Pesadas de Miosina , beta Catenina , Humanos , Metaplasia/metabolismo , Metaplasia/patología , Metaplasia/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Animales , beta Catenina/metabolismo , beta Catenina/genética , Ratones , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Femenino , Vía de Señalización Wnt , Proliferación Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Modelos Animales de Enfermedad , Masculino , Organoides/metabolismo , Organoides/patología
7.
Mol Cancer ; 23(1): 49, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459596

RESUMEN

Circular RNAs (circRNAs) play important roles in gastric cancer progression but the regulatory role of circRNAs in controlling macrophage function remains elusive. Exosomes serve as cargo for circRNAs and play a crucial role as mediators in facilitating communication between cancer cells and the tumor microenvironment. In this study, we found that circATP8A1, a previously unreported circular RNA, is highly expressed in both gastric cancer tissues and exosomes derived from plasma. Increased circATP8A1 was associated with advanced TNM stage and worse prognosis in patients with gastric cancer. We showed that  the circATP8A1 knockdown significantly inhibited gastric cancer proliferation and invasion in vitro and in vivo. Functionally, exosome circATP8A1 induced the M2 polarization of macrophages through the STAT6 pathway instead of the STAT3 pathway. Mechanistically, circATP8A1 was shown to activate the STAT6 pathway through competitive binding to miR-1-3p, as confirmed by Fluorescence In Situ Hybridization (FISH), RNA immunoprecipitation, RNA pulldown, and Luciferase reporter assays. The reversal of circATP8A1-induced STAT6 pathway activation and macrophage polarization was observed upon blocking miR-1-3p. Macrophages treated with exosomes from gastric cancer cells overexpressing circATP8A1 were able to promote gastric cancer migration, while knockdown of circATP8A1 reversed these effects in vivo. In summary, exosome-derived circATP8A1 from gastric cancer cells induce macrophages M2 polarization via the circATP8A1/miR-1-3p/STAT6 axis, and tumor progression. Our results highlight circATP8A1 as a potential prognostic biomarker and therapeutic target in gastric cancer.


Asunto(s)
Exosomas , MicroARNs , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Proliferación Celular , Exosomas/genética , Hibridación Fluorescente in Situ , Macrófagos , MicroARNs/genética , ARN Circular/genética , Factor de Transcripción STAT6/genética , Neoplasias Gástricas/genética , Microambiente Tumoral
8.
Anal Chem ; 96(17): 6666-6673, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38623755

RESUMEN

Nitric oxide (NO) is a crucial signal molecule closely linked to the biological immune response, especially in macrophage polarization. When activated, macrophages enter a pro-inflammatory state and produce NO, a marker for the M1 phenotype. In contrast, the anti-inflammatory M2 phenotype does not produce NO. We developed a mitochondria-targeted two-photon iridium-based complex (Ir-ImNO) probe that can detect endogenous NO and monitor macrophages' different immune response states using various imaging techniques, such as one- and two-photon phosphorescence imaging and phosphorescence lifetime imaging. Ir-ImNO was used to monitor the immune activation of macrophages in mice. This technology aims to provide a clear and comprehensive visualization of macrophage immune responses.


Asunto(s)
Macrófagos , Mitocondrias , Óxido Nítrico , Óxido Nítrico/análisis , Óxido Nítrico/metabolismo , Animales , Macrófagos/inmunología , Macrófagos/metabolismo , Mitocondrias/metabolismo , Mitocondrias/química , Ratones , Células RAW 264.7 , Iridio/química , Imagen Multimodal , Colorantes Fluorescentes/química , Ratones Endogámicos C57BL , Imagen Óptica
9.
Small ; : e2403609, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38923754

RESUMEN

Lithium-ion batteries (LIBs) have emerged as highly promising energy storage devices due to their high energy density and long cycle life. However, their safety concern, particularly under thermal shock, hinders their widespread applications. Herein, a temperature-insensitive electrolyte (TI-electrolyte) with exceptional resistance to thermal stimuli is presented to address the safety issues arising from the lack of thermal abuse tolerance in LIBs. The TI-electrolyte is composed of two phase-change polymers with differentiation melting points (60 and 35°C for polycaprolactone and polyethylene glycol respectively), delivering a wide temperature-resistant range. It is demonstrated that the TI-electrolyte possesses a heat capacity of 27.3 J g-1. The crystalline region in the TI-electrolyte shrinks when confronted with above-ambient temperature, absorbing heat to unlock molecular chains fixed in the crystal lattice, becoming amorphous. Notably, the Li||LFP pouch cell delays 3 valuable minutes to achieve the same temperature as conventional liquid electrolytes (LE) when subjected to thermal shocks, paralleling with the simulation results. Moreover, symmetrical Li||Li cell cycles stably for over 600 h at 0.1 mA cm-2, and Li||LFP full cell demonstrates excellent electrochemical performance, with a capacity of 142.7 mAh g-1 at 0.5 C, thus representing a critical approach to enhancing the safety of LIBs.

10.
J Transl Med ; 22(1): 132, 2024 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310289

RESUMEN

BACKGROUND: The current precision medicine relies on biomarkers, which are mainly obtained through next-generation sequencing (NGS). However, this model failed to find effective drugs for most cancer patients. This study tried to combine liquid biopsy with functional drug tests using organoid models to find potential drugs for cancer patients. METHODS: Colorectal cancer (CRC) patients were prospectively enrolled and blood samples were collected from patients before the start of treatment. Targeted deep sequencing of cfDNA samples was performed using a 14-gene panel. Gastrointestinal (GI) cancer organoids were established and PI3K and mTOR inhibitors were evaluated on organoid models. RESULTS: A total of 195 mutations were detected across 58 cfDNA samples. The most frequently mutated genes were KRAS, TP53, PIK3CA, and BRAF, all of which exhibited higher mutation rates than tissue biopsy. Although 81% of variants had an allele frequency of less than 1%, certain mutations in KRAS, TP53, and SMAD4 had high allele frequencies exceeding 10%. Notably, among the seven patients with high allele frequency mutations, six had metastatic tumors, indicating that a high allele frequency of ctDNA could potentially serve as a biomarker of later-stage cancer. A high rate of PIK3CA mutation (31 out of 67, or 46.3%) was discovered in CRC patients, suggesting possible tumor progression mechanisms and targeted therapy opportunities. To evaluate the value of anti PI3K strategy in GI cancer, different lines of GI cancer organoids were established. The organoids recapitulated the morphologies of the original tumors. Organoids were generally insensitive to PI3K inhibitors. However, CRC-3 and GC-4 showed response to mTOR inhibitor Everolimus, and GC-3 was sensitive to PI3Kδ inhibitor Idelalisib. The CRC organoid with a PIK3CA mutation showed greater sensitivity to the PI3K inhibitor Alpelisib than wildtype organoids, suggesting potential treatment options for the corresponding patients. CONCLUSION: Liquid biopsy holds significant promise for improving precision treatment and tumor prognosis in colorectal cancer patients. The combination of biomarker-based drug prediction with organoid-based functional drug sensitivity assay may lead to more effective cancer treatment.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/diagnóstico , Fosfatidilinositol 3-Quinasas/genética , Evaluación Preclínica de Medicamentos , Proteínas Proto-Oncogénicas p21(ras)/genética , Detección Precoz del Cáncer , Biopsia Líquida , Inhibidores de las Quinasa Fosfoinosítidos-3 , Biomarcadores , Fosfatidilinositol 3-Quinasa Clase I/genética , Mutación/genética
11.
Arterioscler Thromb Vasc Biol ; 43(8): e323-e338, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37317851

RESUMEN

BACKGROUND: Vascular growth followed by vessel specification is crucial for the establishment of a hierarchical blood vascular network. We have shown that TIE2 is required for vein development while little is known about its homologue TIE1 (tyrosine kinase with immunoglobulin-like and EGF [epithelial growth factor]-like domains 1) in this process. METHODS: We analyzed functions of TIE1 as well as its synergy with TIE2 in the regulation of vein formation by employing genetic mouse models targeting Tie1, Tek, and Nr2f2, together with in vitro cultured endothelial cells to decipher the underlying mechanism. RESULTS: Cardinal vein growth appeared normal in TIE1-deficient mice, whereas TIE2 deficiency altered the identity of cardinal vein endothelial cells with the aberrant expression of DLL4 (delta-like canonical Notch ligand 4). Interestingly, the growth of cutaneous veins, which was initiated at approximately embryonic day 13.5, was retarded in mice lack of TIE1. TIE1 deficiency disrupted the venous integrity, displaying increased sprouting angiogenesis and vascular bleeding. Abnormal venous sprouts with defective arteriovenous alignment were also observed in the mesenteries of Tie1-deleted mice. Mechanistically, TIE1 deficiency resulted in the decreased expression of venous regulators including TIE2 and COUP-TFII (chicken ovalbumin upstream promoter transcription factor, encoded by Nr2f2, nuclear receptor subfamily 2 group F member 2) while angiogenic regulators were upregulated. The alteration of TIE2 level by TIE1 insufficiency was further confirmed by the siRNA-mediated knockdown of Tie1 in cultured endothelial cells. Interestingly, TIE2 insufficiency also reduced the expression of TIE1. Combining the endothelial deletion of Tie1 with 1 null allele of Tek resulted in a progressive increase of vein-associated angiogenesis leading to the formation of vascular tufts in retinas, whereas the loss of Tie1 alone produced a relatively mild venous defect. Furthermore, the induced deletion of endothelial Nr2f2 decreased both TIE1 and TIE2. CONCLUSIONS: Findings from this study imply that TIE1 and TIE2, together with COUP-TFII, act in a synergistic manner to restrict sprouting angiogenesis during the development of venous system.


Asunto(s)
Receptor TIE-1 , Receptor TIE-2 , Ratones , Animales , Receptor TIE-1/genética , Receptor TIE-1/metabolismo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Células Endoteliales/metabolismo , Transducción de Señal , Venas
12.
Exp Cell Res ; 423(1): 113453, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36584745

RESUMEN

BACKGROUND: CYRI-B plays key roles in regulating cell motility in nontumor cells. However, the role and function of CYRI-B have rarely been studied in cancer cells, including gastric cancer. The purpose of this study was to investigate the clinical significance, biological function and underlying molecular mechanism of CYRI-B in gastric cancer. METHOD: CYRI-B protein levels were detected by immunohistochemistry (IHC) and western blotting (WB). Gastric cancer cells and organoid models were evaluated to explore the correlation of CYRI-B with collagen type I. The function of CYRI-B in proliferation, migration, invasion in gastric cancer was evaluated by in vitro and in vivo experiments. RESULT: CYRI-B protein levels were downregulated in gastric cancer. Low expression of CYRI-B was related to later tumor stage and poorer prognosis. CYRI-B expression was reduced when cells were cultured in collagen type I, which was mediated by collagen receptor DDR1. Knockdown of CYRI-B promoted migration, invasion and EMT in vivo and in vitro. Mechanistically, knockdown of CYRI-B activated the Rac1-STAT3 pathway. CONCLUSION: Our findings showed that CYRI-B plays an important role in the tumor microenvironment, and is associated with malignant characteristics acquired by gastric cancer. This study may provide new targets for future therapeutic interventions for tumor metastasis.


Asunto(s)
Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Colágeno Tipo I/metabolismo , Regulación hacia Abajo/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/genética , Invasividad Neoplásica/genética , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/patología , Microambiente Tumoral , Proteínas Mitocondriales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
13.
Exp Cell Res ; 426(2): 113565, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36958650

RESUMEN

In recent years, we have realized that extracellular vesicles (EVs) play a critical role in regulating the intercellular communication between tumor and immune cells in the tumor microenvironment (TME). Tumor-derived extracellular vesicles (TDEVs) profoundly affect the functional changes of tumor-associated macrophages (TAMs) and promote their M2 polarization. Meanwhile, macrophages have a strong phagocytic ability in phagocytosing apoptotic cells. Especially in the course of chemotherapy or radiotherapy, TAMs can phagocytose and remove apoptotic tumor cells, showing anti-inflammatory and pro-tumor effects. However, the underlying mechanisms by which TDEVs regulate macrophage phagocytosis of apoptotic tumor cells have not been fully elucidated. In this study, we focused on the effect of colorectal cancer-derived extracellular vesicles (CRC-EVs) on macrophages. We demonstrated that CRC-EVs enhanced macrophage phagocytosis of apoptotic CRC cells. We then determined that heat shock protein 70 (HSP70) carried in CRC-EVs was responsible for this effect by using mass spectrometry-based proteomic analysis and the CRISPR-Cas9 system. Through transcriptome sequencing of macrophages, we found that the enhanced phagocytosis of macrophages was mainly due to the up-regulation of the macrophage receptor with collagenous structure (MARCO). In addition, we confirmed that the up-regulation of MARCO was mediated by the AKT-STAT3 signaling pathway. Taken together, this study revealed a novel EVs-mediated macrophage phagocytosis mechanism involved in the clearance of apoptotic tumor cells in the TME. Targeting TDEVs may have potential therapeutic applications in tumor treatment.


Asunto(s)
Neoplasias Colorrectales , Vesículas Extracelulares , Humanos , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteómica , Macrófagos/metabolismo , Fagocitosis , Vesículas Extracelulares/metabolismo , Neoplasias Colorrectales/metabolismo , Microambiente Tumoral
14.
Dig Dis Sci ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990269

RESUMEN

BACKGROUND: N-acetyltransferase 10 (NAT10), the only RNA cytosine acetyltransferase known in humans, contributes to cancer tumorigenesis and progression. This study aims to investigate the effect of NAT10 on the malignant biological properties of gastric cancer (GC) and its underlying mechanism. METHODS: The expression and prognostic significance of NAT10 in GC were analyzed using The Cancer Genome Atlas (TCGA) and Sun Yat-sen University (SYSU) cohorts. The influence of NAT10 on the malignant biological behaviors of GC was detected by Cell Counting Kit-8 (CCK-8) assay, plate colony formation assay, 5-ethynyl-2'-deoxyuridine (EdU), Transwell migration and invasion assays, scratch wound assay, flow cytometric analysis, and animal studies. The overall level of N4 acetylcytidine (ac4C) in GC was detected by liquid chromatography with tandem mass spectrometry (LC-MS/MS). The downstream signal pathways of NAT10 were analyzed by Gene Set Enrichment Analysis (GSEA) and verified by Western blot (WB) and immunofluorescence (IF). RESULTS: The significant upregulation of NAT10 expression in GC was associated with a poor prognosis. The knockdown of NAT10 markedly suppressed GC cell proliferation, migration, invasion, and cell cycle progression. Downregulating NAT10 reduced ac4C levels and inhibited AKT phosphorylation and epithelial-mesenchymal transition (EMT) in GC. CONCLUSIONS: NAT10 functions as an oncogene and may provide a new therapeutic target in GC.

15.
Surg Endosc ; 38(1): 460-468, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37985489

RESUMEN

BACKGROUND: Large artificial gastric mucosal defects are always left unclosed for natural healing due to technique difficulties in closure. This study aims to evaluate the feasibility and safety of a new Twin-grasper Assisted Mucosal Inverted Closure (TAMIC) technique in closing large artificial gastric mucosal defects. METHODS: Endoscopic submucosal dissection (ESD) was performed in fifteen pigs to create large gastric mucosal defects. The mucosal defects were then either left unclosed or closed with metallic clips using TAMIC technique. Successful closure rate and the wound outcomes were assessed. RESULTS: Two mucosal defects with size of about 4.0 cm were left unclosed and healed two months after surgery. Thirteen large gastric mucosal defects were created by ESD with a medium size of 5.9 cm and were successfully closed with the TAMIC technique (100%), even in a mucosal defect with a width up to 8.5 cm. The mean closure time was 59.0 min. Wounds in eight stomachs remained completely closed 1 week after surgery (61.5%), while closure in the other five stomachs had partial wound dehiscence (38.5%). Four weeks later, all the closed defects healed well and 61.5% of the wounds still remained completely closed during healing. There was no delayed perforation or bleeding after surgery. In addition, there was less granulation in the submucosal layer of the closed wound sites than those under natural healing. CONCLUSIONS: The present study suggests that TAMIC is feasible and safe in closing large artificial gastric mucosal defects and could improve mucosal recovery compared to natural healing process.


Asunto(s)
Resección Endoscópica de la Mucosa , Técnicas de Cierre de Heridas , Porcinos , Animales , Mucosa Gástrica/cirugía , Complicaciones Posoperatorias , Instrumentos Quirúrgicos , Resultado del Tratamiento
16.
Cell Mol Life Sci ; 80(7): 191, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37369919

RESUMEN

Extrachromosomal circular DNAs (eccDNAs) carrying random genomic segments are broadly found across different cancer types, but their molecular functions and impact in gastric cancer (GC) are rarely known. In this study, we aimed to investigate the potential role of eccDNA in GC. Using the Circle-seq strategy, we observed the eccDNA abundance in gastric cancer tissues (GCT) was aberrantly higher than that of normal adjacent tissues (NAT). The high abundance of eccDNAs carrying oncogene-segments in GCT may represent the DNA damage products of amplified oncogenes. Analysis of GCT over-represented eccDNA carrying enhancer (eccEnhancer) based on data from FANTOM5 project combined with TCGA database suggested the GC over-represented eccEnhancers may contribute to development of GC. GC over-represented eccDNAs carrying pre-miRNA (eccMIR) were enriched to multiple cancer-relevant signal pathways by KEGG analysis. We then synthesized the top six GC over-represented eccMIRs and found four of them enabled high expression of miRNAs and down-regulation of miRNA-target genes in MGC803 cells. Furthermore, we observed the inheritance of GC over-represented eccMIRs benefited host cell proliferation and promoted the aggressive features of host cells. Altogether, this study revealed the GC over-represented eccDNAs carrying functional genomic segments were related to the carcinogenesis of GC and presented the capability to facilitate cancer progression, suggesting the cancerous eccDNAs may serve as a dynamic reservoir for genome plasticity and rapid adaptive evolution of cancer. Therefore, blocking the pathways for eccDNAs generation may provide a novel therapeutic strategy for the treatment of gastric cancer.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , ADN Circular/genética , Genoma , ADN , Carcinogénesis/genética
17.
Drug Resist Updat ; 66: 100913, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36603431

RESUMEN

AIMS: Chemoresistance remains a major challenge in gastric cancer (GC). Chromodomain helicase DNA-binding protein 4 (CHD4) mediated chromatin remodeling plays critical roles in various tumor types, but its role in chemoresistance in GC remains uncharacterized. METHODS: CHD4 expression was examined by immunohistochemistry and Western blotting. The role of CHD4 on cell proliferation and chemoresistance of GC was examined in vitro and in vivo. Immunoprecipitation and liquid chromatography-mass spectrometry were used to identify CHD4-binding proteins and a proximity ligation assay was used to explore protein-protein interaction. RESULTS: Chemoresistance is associated with upregulation of CHD4 in the tumor tissues of GC patients. Overexpression of CHD4 increased chemoresistance and cell proliferation. Knockdown of CHD4 induced cell apoptosis and cell cycle arrest. CHD4 mediates the decrease of the intracellular concentration of cisplatin by inducing drug efflux. Additionally, CHD4 promotes the interaction between ERK1/2 and MEK1/2, resulting in continuous activation of MEK/ERK pathway. Knockdown of CHD4 in GC increased sensitivity to chemotherapy and suppressed tumor growth in a mouse xenograft model. CONCLUSIONS: This study identifies CHD4 dominated multi-drug efflux as a promising therapeutic target for overcoming acquired chemoresistance in GC.


Asunto(s)
Cisplatino , Resistencia a Antineoplásicos , Animales , Humanos , Ratones , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Quinasas de Proteína Quinasa Activadas por Mitógenos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo
18.
World J Surg Oncol ; 22(1): 206, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090636

RESUMEN

BACKGROUND: Anemia represents a well-established risk factor for patients diagnosed with gastric cancer, and is often associated with an unfavorable prognosis. In this context, the timely prediction of distant metastasis risk in patients with anemic gastric cancer assumes paramount importance. METHODS: Information of gastric cancer patients complicated with preoperative anemia in the First Affiliated Hospital of Sun Yat-sen University was collected. The cohort from the First Affiliated Hospital of Guangxi Medical University was used as an external validation set. A Nomogram was established based on the risk factors screened by univariate and multivariate logistic regression analyses. RESULTS: A total of 848 gastric cancer patients with preoperative anemia were enrolled. Pyloric obstruction, carcinoma antigen 125, T stage, N stage, tumor size, and preoperative weight loss were independent predictors of distant metastasis in gastric cancer patients with anemia (p < 0.05), based on which a nomogram was constructed. The accuracy, reliability and clinical value of the nomogram were evaluated by concordance index, receiver operating characteristic curve, decision curve analysis, calibration curve and showed good stability and clinical predictive value. CONCLUSIONS: Preoperative anemic gastric cancer patients, complicated with pyloric obstruction, elevated CA125, advanced T and N stage, larger tumor size, and preoperative weight loss, should be paid more attention to distant metastasis.


Asunto(s)
Anemia , Nomogramas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Neoplasias Gástricas/cirugía , Neoplasias Gástricas/complicaciones , Masculino , Femenino , Anemia/etiología , Anemia/complicaciones , Persona de Mediana Edad , Estudios Retrospectivos , Pronóstico , Factores de Riesgo , Estudios de Seguimiento , Gastrectomía , Anciano , Estadificación de Neoplasias , Curva ROC , Periodo Preoperatorio , Adulto
19.
Ann Diagn Pathol ; 68: 152239, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38006863

RESUMEN

BACKGROUND: The correlation between the expression of immunohistochemical markers and the clinicopathological characteristics of pulmonary high-grade neuroendocrine carcinomas (HGNEC) and its impact on the clinical outcomes of individuals with HGNEC has not yet been explored. METHODS: This study enrolled patients diagnosed with HGNEC between April 2015 and July 2023. Based on the expression levels of synaptophysin (Syn), the neural cell adhesion molecule (CD56), thyroid transcription factor-1 (TTF-1), and Ki-67, a comprehensive analysis was conducted. This involved a comparison of clinicopathological characteristics, chemosensitivity, overall survival (OS), and progression-free survival (PFS). Furthermore, the study identified prognostic factors associated with patient survival through univariate and multivariate analyses. RESULTS: Eighty-two patients were analyzed. Significant differences were identified in tumor stage (χ2 = 5.473, P = 0.019), lymphatic invasion (χ2 = 8.839, P = 0.003), and distant metastasis (χ2 = 5.473, P = 0.019), respectively, between the CD56 positive and negative groups. A significant difference in lymphatic invasion was observed (χ2 = 9.949, P = 0.002) between the CD56 positive and negative groups. A significant difference in vascular invasion was observed (χ2 = 5.106, P = 0.024) between the low and high Ki-67 groups. Compared to the Syn negative group, the Syn positive group had significantly shorter PFS (P = 0.006). Compared to the Syn negative group, the Syn positive group had significantly shorter OS (P = 0.004). The CD56 positive group also had significantly shorter OS than the CD56 negative group (P = 0.027). Univariate analysis revealed that tumor stage and Syn expression were associated with OS and PFS. Lymphatic invasion and CD56 expression were associated with OS. Multivariate analysis revealed that tumor stage was the strongest predictor of poor prognosis for OS (hazard ratio [HR] 0.551, 95 % confidence interval [CI] 0.328-0.927, P = 0.025) and PFS (HR 0.409, 95 % CI 0.247-0.676, P < 0.001). CONCLUSIONS: Positive expression of Syn was associated with reduced PFS and OS, while positive CD56 expression was correlated with a shorter OS in HGNEC. The TNM stage was an independent risk factor that significantly influenced PFS and OS in patients with HGNEC. More studies are needed to make further progress in future treatment.


Asunto(s)
Carcinoma Neuroendocrino , Glándula Tiroides , Humanos , Pronóstico , Sinaptofisina/metabolismo , Antígeno Ki-67 , Glándula Tiroides/patología , Carcinoma Neuroendocrino/patología , Estudios Retrospectivos
20.
BMC Genomics ; 24(1): 354, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365511

RESUMEN

BBX proteins play important roles in all of the major light-regulated developmental processes. However, no systematic analysis of BBX gene family regarding the regulation of photoperiodic microtuber formation has been previously performed in yam. In this study, a systematic analysis on the BBX gene family was conducted in three yam species, with the results, indicating that this gene plays a role in regulating photoperiodic microtuber formation. These analyses included identification the BBX gene family in three yam species, their evolutionary relationships, conserved domains, motifs, gene structure, cis-acting elements, and expressional patterns. Based on these analyses, DoBBX2/DoCOL5 and DoBBX8/DoCOL8 showing the most opposite pattern of expression during microtuber formation were selected as candidate genes for further investigation. Gene expression analysis showed DoBBX2/DoCOL5 and DoBBX8/DoCOL8 were highest expressed in leaves and exhibited photoperiod responsive expression patterns. Besides, the overexpression of DoBBX2/DoCOL5 and DoBBX8/DoCOL8 in potato accelerated tuber formation under short-day (SD) conditions, whereas only the overexpression of DoBBX8/DoCOL8 enhanced the accelerating effect of dark conditions on tuber induction. Tuber number was increased in DoBBX8/DoCOL8 overexpressing plants under dark, as well as in DoBBX2/DoCOL5 overexpressing plants under SD. Overall, the data generated in this study may form the basis of future functional characterizations of BBX genes in yam, especially regarding their regulation of microtuber formation via the photoperiodic response pathway.


Asunto(s)
Dioscorea , Dioscorea/genética , Dioscorea/metabolismo , Perfilación de la Expresión Génica , Familia de Multigenes , Fotoperiodo , Ritmo Circadiano , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA