Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Vet Res ; 20(1): 212, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764041

RESUMEN

BACKGROUND: Acinetobacter lwoffii (A.lwoffii) is a serious zoonotic pathogen that has been identified as a cause of infections such as meningitis, bacteremia and pneumonia. In recent years, the infection rate and detection rate of A.lwoffii is increasing, especially in the breeding industry. Due to the presence of biofilms, it is difficult to eradicate and has become a potential super drug-resistant bacteria. Therefore, eradication of preformed biofilm is an alternative therapeutic action to control A.lwoffii infection. The present study aimed to clarify that baicalin could eradicate A.lwoffii biofilm in dairy cows, and to explore the mechanism of baicalin eradicating A.lwoffii. RESULTS: The results showed that compared to the control group, the 4 MIC of baicalin significantly eradicated the preformed biofilm, and the effect was stable at this concentration, the number of viable bacteria in the biofilm was decreased by 0.67 Log10CFU/mL. The total fluorescence intensity of biofilm bacteria decreased significantly, with a reduction rate of 67.0%. There were 833 differentially expressed genes (367 up-regulated and 466 down-regulated), whose functions mainly focused on oxidative phosphorylation, biofilm regulation system and trehalose synthesis. Molecular docking analysis predicted 11 groups of target proteins that were well combined with baicalin, and the content of trehalose decreased significantly after the biofilm of A.lwoffii was treated with baicalin. CONCLUSIONS: The present study evaluated the antibiofilm potential of baicalin against A.lwoffii. Baicalin revealed strong antibiofilm potential against A.lwoffii. Baicalin induced biofilm eradication may be related to oxidative phosphorylation and TCSs. Moreover, the decrease of trehalose content may be related to biofilm eradication.


Asunto(s)
Acinetobacter , Antibacterianos , Biopelículas , Flavonoides , Leche , Biopelículas/efectos de los fármacos , Animales , Flavonoides/farmacología , Acinetobacter/efectos de los fármacos , Bovinos , Leche/microbiología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Femenino , Infecciones por Acinetobacter/veterinaria , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología
2.
Microorganisms ; 12(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38930479

RESUMEN

Probiotic biofilms have been beneficial in the fight against infections, restoring the equilibrium of the host's gut microbiota, and enhancing host health. They are considered a novel strategy for probiotic gut colonization. In this case, we evaluated the effects of various active substances from traditional Chinese medicine on Escherichia coli Nissle 1917 (EcN) to determine if they promote biofilm formation. It was shown that 8-64 µg/mL of oleanolic acid increased the development of EcN biofilm. Additionally, we observed that oleanolic acid can effectively suppress biofilm formation in pathogenic bacteria such as Salmonella and Staphylococcus aureus. Next, we assessed the amount of EcN extracellular polysaccharides, the number of live bacteria, their metabolic activity, the hydrophobicity of their surface, and the shape of their biofilms using laser confocal microscopy. Through transcriptome analysis, a total of 349 differentially expressed genes were identified, comprising 134 upregulated and 215 downregulated genes. GO functional enrichment analysis and KEGG pathway enrichment analysis revealed that oleanolic acid functions are through the regulation of bacterial motility, the iron absorption system, the two-component system, and adhesion pathways. These findings suggest that the main effects of oleanolic acid are to prevent bacterial motility, increase initial adhesion, and encourage the development of EcN biofilms. In addition, oleanolic acid interacts with iron absorption to cooperatively control the production of EcN biofilms within an optimal concentration range. Taking these results together, this study suggests that oleanolic acid may enhance probiotic biofilm formation in the intestines, presenting new avenues for probiotic product development.

3.
Biomed Pharmacother ; 175: 116716, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735084

RESUMEN

Biofilms often engender persistent infections, heightened antibiotic resistance, and the recurrence of infections. Therefor, infections related to bacterial biofilms are often chronic and pose challenges in terms of treatment. The main transcription regulatory factor, CsgD, activates csgABC-encoded curli to participate in the composition of extracellular matrix, which is an important skeleton for biofilm development in enterobacteriaceae. In our previous study, a wide range of natural bioactive compounds that exhibit strong affinity to CsgD were screened and identified via molecular docking. Tannic acid (TA) was subsequently chosen, based on its potent biofilm inhibition effect as observed in crystal violet staining. Therefore, the aim of this study was to investigate the specific effects of TA on the biofilm formation of clinically isolated Escherichia coli (E. coli). Results demonstrated a significant inhibition of E. coli Ec032 biofilm formation by TA, while not substantially affecting the biofilm of the ΔcsgD strain. Moreover, deletion of the csgD gene led to a reduction in Ec032 biofilm formation, alongside diminished bacterial motility and curli synthesis inhibition. Transcriptomic analysis and RT-qPCR revealed that TA repressed genes associated with the csg operon and other biofilm-related genes. In conclusion, our results suggest that CsgD is one of the key targets for TA to inhibit E. coli biofilm formation. This work preliminarily elucidates the molecular mechanisms of TA inhibiting E. coli biofilm formation, which could provide a lead structure for the development of future antibiofilm drugs.


Asunto(s)
Biopelículas , Proteínas de Escherichia coli , Escherichia coli , Regulación Bacteriana de la Expresión Génica , Taninos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Taninos/farmacología , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Antibacterianos/farmacología , Transactivadores
4.
Front Cell Infect Microbiol ; 13: 1295311, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38162583

RESUMEN

Biofilm is a structured community of bacteria encased within a self-produced extracellular matrix. When bacteria form biofilms, they undergo a phenotypic shift that enhances their resistance to antimicrobial agents. Consequently, inducing the transition of biofilm bacteria to the planktonic state may offer a viable approach for addressing infections associated with biofilms. Our previous study has shown that the mouse antimicrobial peptide CRAMP-34 can disperse Pseudomonas aeruginosa (P. aeruginosa) biofilm, and the potential mechanism of CRAMP-34 eradicate P. aeruginosa biofilms was also investigated by combined omics. However, changes in bacterial extracellular metabolism have not been identified. To further explore the mechanism by which CRAMP-34 disperses biofilm, this study analyzed its effects on the extracellular metabolites of biofilm cells via metabolomics. The results demonstrated that a total of 258 significantly different metabolites were detected in the untargeted metabolomics, of which 73 were downregulated and 185 were upregulated. Pathway enrichment analysis of differential metabolites revealed that metabolic pathways are mainly related to the biosynthesis and metabolism of amino acids, and it also suggested that CRAMP-34 may alter the sensitivity of biofilm bacteria to antibiotics. Subsequently, it was confirmed that the combination of CRAMP-34 with vancomycin and colistin had a synergistic effect on dispersed cells. These results, along with our previous findings, suggest that CRAMP-34 may promote the transition of PAO1 bacteria from the biofilm state to the planktonic state by upregulating the extracellular glutamate and succinate metabolism and eventually leading to the dispersal of biofilm. In addition, increased extracellular metabolites of myoinositol, palmitic acid and oleic acid may enhance the susceptibility of the dispersed bacteria to the antibiotics colistin and vancomycin. CRAMP-34 also delayed the development of bacterial resistance to colistin and ciprofloxacin. These results suggest the promising development of CRAMP-34 in combination with antibiotics as a potential candidate to provide a novel therapeutic approach for the prevention and treatment of biofilm-associated infections.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Ratones , Vancomicina , Colistina/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Infecciones por Pseudomonas/microbiología , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA