Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Med Virol ; 93(1): 389-400, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32579254

RESUMEN

Since the outbreak of severe acute respiratory syndrome (SARS) in 2003, the harm caused by coronaviruses to the world cannot be underestimated. Recently, a novel coronavirus (severe acute respiratory syndrome coronavirus-2 [SARS-CoV-2]) initially found to trigger human severe respiratory illness in Wuhan City of China in 2019, has infected more than six million people worldwide by 21 June 2020, and which has been recognized as a public health emergency of international concern as well. And the virus has spread to more than 200 countries around the world. However, the effective drug has not yet been officially licensed or approved to treat SARS-Cov-2 and SARS-Cov infection. NSP12-NSP7-NSP8 complex of SARS-CoV-2 or SARS-CoV, essential for viral replication and transcription, is generally regarded as a potential target to fight against the virus. According to the NSP12-NSP7-NSP8 complex (PDB ID: 7BW4) structure of SARS-CoV-2 and the NSP12-NSP7-NSP8 complex (PDB ID: 6NUR) structure of SARS-CoV, NSP12-NSP7 interface model, and NSP12-NSP8 interface model were established for virtual screening in the present study. Eight compounds (Nilotinib, Saquinavir, Tipranavir, Lonafarnib, Tegobuvir, Olysio, Filibuvir, and Cepharanthine) were selected for binding free energy calculations based on virtual screening and docking scores. All eight compounds can combine well with NSP12-NSP7-NSP8 in the crystal structure, providing drug candidates for the treatment and prevention of coronavirus disease 2019 and SARS.


Asunto(s)
Antivirales/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , SARS-CoV-2/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Descubrimiento de Drogas/métodos , Modelos Moleculares , Bibliotecas de Moléculas Pequeñas
2.
Polymers (Basel) ; 16(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38475380

RESUMEN

To solve the problem of the poor abrasion resistance of concrete pavement surface mortar, this study substituted cement with equal amounts of styrene-butadiene rubber (SBR) latex and silica fume (SF) to investigate the effects of organic/inorganic material composite modification on the fluidity, drying shrinkage, mechanical properties, and abrasion resistance of cement mortar. Also in this study, the microstructure, product, and pore structure characteristics of the composite modified cement mortar were investigated using scanning electron microscope (SEM), X-Ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and the Brunauer-Emmett-Teller (BET) method. This research found that the sole substitution of SF negatively impacted the mortar's fluidity and drying shrinkage yet enhanced its mechanical strength and abrasion resistance; the incorporation of SBR latex improved fluidity, reduced shrinkage, and increased flexural strength but adversely affected the compressive strength of the mortar. Additionally, the enhancement of the mortar's abrasion resistance with SBR latex was significantly greater than that with SF. When SBR latex and SF were used together as substitutes, the latex struggled to offset the negative impact of SF on mortar fluidity but effectively reduced shrinkage; SF compensated for the detrimental effect of the latex on compressive strength. Moreover, the primary role in enhancing the mortar's abrasion resistance was played by the latex. Microscopic tests showed that SBR latex and SF could increase the content of calcium silicate hydrate (C-S-H) gel, inhibit the formation of ettringite (AFt) and reduce carbonation, refine the pore size of cement mortar, and effectively improve the microstructure of mortar.

3.
Polymers (Basel) ; 15(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36616521

RESUMEN

The application of magnesium oxychloride cement (MOC) is promising, but its poor water resistance seriously hinders its development and application. In this paper, we describe a new type of MOC with excellent water resistance, prepared using fly ash and hexadecyltrimethoxysilane (HDTMS). SEM, XRD, FTIR, TG/DSC, and other microscopic-scale studies were conducted to investigate the mechanism underlying the water-resistance enhancement of the new MOC. It was found that adding 20% fly ash and 3% HDTMS can strengthen the water resistance of MOC while retaining high mechanical properties. In particular, the residual coefficient remained at 0.91 after 7 days of immersion. This is because these two additives, when used together, can increase the content of the gelling 5-phase of MOC, as well as optimize the pore structure of MOC.

4.
Infect Drug Resist ; 13: 2837-2844, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32884307

RESUMEN

PURPOSE: Fosfomycin is now widely used to treat methicillin-resistant S. aureus due to its unique antibacterial activity. However, fosfomycin-resistant S. aureus has rapidly emerged, it is urgent to find new treatments to eliminate fosfomycin-resistant S. aureus infection. The purpose of this study was to analyze the activity of cryptanshinone, a traditional Chinese medicine monomer, in combination with fosfomycin against fosfomycin-sensitive S. aureus (FSSA) and fosfomycin-resistant S. aureus (FRSA). METHODS: The MICs of fosfomycin and/or cryptanshinone were determined by agar dilution assay and checkerboard microdilution assay. Furthermore, synergistic effects from fosfomycin and/or cryptanshinone were analyzed by the time-kill assay in vitro. RESULTS: The combination of fosfomycin and cryptotanshinone had a synergistic effect on most (71.43%) of the FRSA and had a partial (28.57%) synergistic effect on a small part. In addition, time sterilization curve verified synergistic activity between cryptanshinone and fosfomycin against FSSA and FRSA, especially when fosfomycin was added for a second time. CONCLUSION: These data suggest that cryptanshinone combined with fosfomycin could be a novel treatment for FRSA and provide a new direction for the treatment of bacterial infections in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA