RESUMEN
The channel-hopping-based rendezvous is essential to alleviate the problem of under-utilization and scarcity of the spectrum in cognitive radio networks. It dynamically allows unlicensed secondary users to schedule rendezvous channels using the assigned hopping sequence to guarantee the self-organization property in a limited time. In this paper, we use the interleaving technique to cleverly construct a set of asynchronous channel-hopping sequences consisting of d sequences of period xN2 with flexible parameters, which can generate sequences of different lengths. By this advantage, the new designed CHSs can be used to adapt to the demands of various communication scenarios. Furthermore, we focus on the improved maximum-time-to-rendezvous and maximum-first-time-to-rendezvous performance of the new construction compared to the prior research at the same sequence length. The new channel-hopping sequences ensure that rendezvous occurs between any two sequences and the rendezvous times are random and unpredictable when using licensed channels under asynchronous access, although the full degree-of-rendezvous is not satisfied. Our simulation results show that the new construction is more balanced and unpredictable between the maximum-time-to-rendezvous and the mean and variance of time-to-rendezvous.
RESUMEN
The nanoscale multidrug codelivery system for synergistic therapy is an effective strategy for tumor treatment. However, the low drug delivery efficiency and poor therapeutic effects limit its application. Here, based on the coordination effect of Artemisinin (Art), quercetin (Qc), and Fe3+, we had constructed a safe and efficient carrier-free hyaluronic acid (HA)-modified Art-Fe-Qc nanoparticles (AFQ@HA NPs) for enhanced chemotherapy/photothermal therapy (PTT)-chemodynamic therapy (CDT) synergistic therapy, which achieved an ultrahigh drug loading efficiency and a multifunction anticancer strategy. The results showed that high drug loading was achieved based on drug coordination self-assembly, with Art and Qc contents of 38.6 and 42.7%, respectively. At the same time, based on the Qc-Fe coordination molecular network, the system had excellent photothermal conversion performance with an efficiency of 57.3% and could effectively inhibit the expression of HSP70, achieving enhanced PTT. Further, under the stimulation of excessive H2O2 and glutathione (GSH) in the tumor microenvironment, the AFQ@HA NPs were continuously degraded, while releasing Art and Fe3+/Fe2+ to achieve iron ion-enhanced CDT. The results of in vitro and in vivo experiments showed that AFQ@HA NPs could achieve chemotherapy-PTT-CDT synergistic therapy in response to tumor microenvironment by passively targeting and actively targeting tumor cells with CD44, demonstrating its excellent targeted antitumor effects.
Asunto(s)
Antineoplásicos , Artemisininas , Ácido Hialurónico , Nanopartículas , Terapia Fototérmica , Quercetina , Microambiente Tumoral , Microambiente Tumoral/efectos de los fármacos , Animales , Quercetina/química , Quercetina/farmacología , Artemisininas/química , Artemisininas/farmacología , Humanos , Ratones , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Nanopartículas/química , Antineoplásicos/química , Antineoplásicos/farmacología , Nanomedicina , Línea Celular Tumoral , Ratones Endogámicos BALB C , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Neoplasias/patología , Ratones Desnudos , Hierro/químicaRESUMEN
HLA-A*02:937 has one nucleotide change compared with HLA-A*02:07:01:01 in codon 182 of exon 3 (ACG>GCG).
Asunto(s)
Antígenos HLA-A , Nucleótidos , Alelos , Secuencia de Bases , China , Codón , Antígenos HLA-A/genética , HumanosRESUMEN
Compared to omnidirectional wheel robots and Mecanum wheel robots, four-wheel independent steering (4WIS) robots are more efficient. In recent years, 4WIS robot become the best choice for high-speed maneuverable mobile robots. However, the delay of the steering motor action and the control command exceeding the maximum speed of the steering motor make it difficult for the 4WIS robot to perform high-precision high-speed trajectory tracking. This paper proposes a high-speed trajectory tracking method combining the dynamics of the 4WIS robot. The A* algorithm is used for path planning, and then combined with the robot dynamics performance for trajectory planning. A 4WIS robot kinematics model and a model predictive control (MPC) controller with dynamic constraints are established. Simulations and experiments support the effectiveness and practicability of the trajectory tracking method. The high-speed trajectory tracking control of the 4WIS robot is realized.
RESUMEN
Background: COVID-19 has caused a global pandemic and the death toll is increasing. With the coronavirus continuously mutating, Omicron has replaced Delta as the most widely reported variant in the world. Studies have shown that the plasma of some vaccinated people does not neutralize the Omicron variant. However, further studies are needed to determine whether plasma neutralizes Omicron after one- or two-dose vaccine in patients who have recovered from infection with the original strain. Methods: The pseudovirus neutralization assays were performed on 64 plasma samples of convalescent COVID-19 patients, which were divided into pre-vaccination group, one-dose vaccinated group and two-dose vaccinated group. Results: In the three groups, there were significant reductions of sera neutralizing activity from WT to Delta variant (B.1.617.2), and from WT to Omicron variant (B.1.1.529) (ps<0.001), but the difference between Delta and Omicron variants were not significant (p>0.05). The average neutralization of the Omicron variant showed a significant difference between pre-vaccination and two-dose vaccinated convalescent individuals (p<0.01). Conclusions: Among the 64 plasma samples of COVID-19 convalescents, whether vaccinated or not, Omicron (B.1.1.529) escaped the neutralizing antibodies, with a significantly decreased neutralization activity compared to WT. And two-dose of vaccine could significantly raise the average neutralization of Omicron in convalescent individuals.
Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , Pruebas de Neutralización , SARS-CoV-2RESUMEN
Modified nanofibrous Poly(L-lactic acid) (PLLA) scaffolds were fabricated by aminolysis combined with thermally induced phase separation technique using PLLA/1,4-dioxane/urea-NaOH-H2O system at -40 °C freeze temperature. Aminolysis led to the modification of scaffold resulting in enhancement in the bioactivity. The surface of the modified nanofibrous scaffold provided a good environment for attachment and proliferation of MC3T3-E1 subclone 14 cells, exhibiting significant potential for bone tissue regeneration and for promoting cytocompatibility.
Asunto(s)
Materiales Biocompatibles/química , Regeneración Ósea , Nanofibras/química , Poliésteres/química , Andamios del Tejido/química , Animales , Adhesión Celular , Línea Celular , Proliferación Celular , Dioxanos/química , Ratones , Microscopía Electrónica de Rastreo , Osteoblastos/citología , Propiedades de SuperficieRESUMEN
Three-dimensional polycaprolactone (PCL) scaffolds with spherulite and nanofibrous structures were fabricated for the first time by thermally induced phase separation from a ternary PCL/dioxane/water system. Moreover, the effects of polymer concentration, aging temperature and the ratio of dioxane to water on the morphology of nanofibrous scaffolds were investigated. The result revealed that gelation, aging temperature, and ratio of solvents significantly influenced the formation of the unique spherulite and nanofibrous structures. The apatite-formation ability test showed relatively rapid growth of carbonate hydroxyapatite in the nanofibrous PCL scaffold with macropore compared to the other two scaffolds with smooth structure and nanofibrous structure without macropore, respectively, indicating good apatite-formation ability of the macroporous and nanofibrous PCL scaffolds.