Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
2.
Nature ; 547(7662): 227-231, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28581498

RESUMEN

The regenerative capacity of the adult mammalian heart is limited, because of the reduced ability of cardiomyocytes to progress through mitosis. Endogenous cardiomyocytes have regenerative capacity at birth but this capacity is lost postnatally, with subsequent organ growth occurring through cardiomyocyte hypertrophy. The Hippo pathway, a conserved kinase cascade, inhibits cardiomyocyte proliferation in the developing heart to control heart size and prevents regeneration in the adult heart. The dystrophin-glycoprotein complex (DGC), a multicomponent transmembrane complex linking the actin cytoskeleton to extracellular matrix, is essential for cardiomyocyte homeostasis. DGC deficiency in humans results in muscular dystrophy, including the lethal Duchenne muscular dystrophy. Here we show that the DGC component dystroglycan 1 (Dag1) directly binds to the Hippo pathway effector Yap to inhibit cardiomyocyte proliferation in mice. The Yap-Dag1 interaction was enhanced by Hippo-induced Yap phosphorylation, revealing a connection between Hippo pathway function and the DGC. After injury, Hippo-deficient postnatal mouse hearts maintained organ size control by repairing the defect with correct dimensions, whereas postnatal hearts deficient in both Hippo and the DGC showed cardiomyocyte overproliferation at the injury site. In the hearts of mature Mdx mice (which have a point mutation in Dmd)-a model of Duchenne muscular dystrophy-Hippo deficiency protected against overload-induced heart failure.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Distrofina/metabolismo , Glicoproteínas/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Miocitos Cardíacos/citología , Fosfoproteínas/metabolismo , Animales , Cardiomiopatías , Proteínas de Ciclo Celular , Proliferación Celular , Distroglicanos/metabolismo , Distrofina/deficiencia , Distrofina/genética , Glicoproteínas/deficiencia , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/prevención & control , Vía de Señalización Hippo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Complejos Multiproteicos/deficiencia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Miocitos Cardíacos/metabolismo , Tamaño de los Órganos , Fosforilación , Presión , Unión Proteica , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Señalizadoras YAP
3.
Nature ; 550(7675): 260-264, 2017 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-28976966

RESUMEN

Mammalian organs vary widely in regenerative capacity. Poorly regenerative organs, such as the heart are particularly vulnerable to organ failure. Once established, heart failure commonly results in mortality. The Hippo pathway, a kinase cascade that prevents adult cardiomyocyte proliferation and regeneration, is upregulated in human heart failure. Here we show that deletion of the Hippo pathway component Salvador (Salv) in mouse hearts with established ischaemic heart failure after myocardial infarction induces a reparative genetic program with increased scar border vascularity, reduced fibrosis, and recovery of pumping function compared with controls. Using translating ribosomal affinity purification, we isolate cardiomyocyte-specific translating messenger RNA. Hippo-deficient cardiomyocytes have increased expression of proliferative genes and stress response genes, such as the mitochondrial quality control gene, Park2. Genetic studies indicate that Park2 is essential for heart repair, suggesting a requirement for mitochondrial quality control in regenerating myocardium. Gene therapy with a virus encoding Salv short hairpin RNA improves heart function when delivered at the time of infarct or after ischaemic heart failure following myocardial infarction was established. Our findings indicate that the failing heart has a previously unrecognized reparative capacity involving more than cardiomyocyte renewal.


Asunto(s)
Proteínas de Ciclo Celular/deficiencia , Insuficiencia Cardíaca Sistólica/metabolismo , Insuficiencia Cardíaca Sistólica/terapia , Infarto del Miocardio/complicaciones , Proteínas Serina-Treonina Quinasas/deficiencia , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Terapia Genética , Insuficiencia Cardíaca Sistólica/etiología , Insuficiencia Cardíaca Sistólica/patología , Vía de Señalización Hippo , Humanos , Ratones , Ratones Noqueados , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Control de Calidad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/genética , Ubiquitina-Proteína Ligasas/genética
4.
Nature ; 534(7605): 119-23, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27251288

RESUMEN

Myocardial infarction results in compromised myocardial function and heart failure owing to insufficient cardiomyocyte self-renewal. Unlike many vertebrates, mammalian hearts have only a transient neonatal renewal capacity. Reactivating primitive reparative ability in the mature mammalian heart requires knowledge of the mechanisms that promote early heart repair. By testing an established Hippo-deficient heart regeneration mouse model for factors that promote renewal, here we show that the expression of Pitx2 is induced in injured, Hippo-deficient ventricles. Pitx2-deficient neonatal mouse hearts failed to repair after apex resection, whereas adult mouse cardiomyocytes with Pitx2 gain-of-function efficiently regenerated after myocardial infarction. Genomic analyses indicated that Pitx2 activated genes encoding electron transport chain components and reactive oxygen species scavengers. A subset of Pitx2 target genes was cooperatively regulated with the Hippo pathway effector Yap. Furthermore, Nrf2, a regulator of the antioxidant response, directly regulated the expression and subcellular localization of Pitx2. Pitx2 mutant myocardium had increased levels of reactive oxygen species, while antioxidant supplementation suppressed the Pitx2 loss-of-function phenotype. These findings reveal a genetic pathway activated by tissue damage that is essential for cardiac repair.


Asunto(s)
Antioxidantes/metabolismo , Lesiones Cardíacas/metabolismo , Proteínas de Homeodominio/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Regeneración/fisiología , Factores de Transcripción/metabolismo , Cicatrización de Heridas/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Recién Nacidos , Antioxidantes/farmacología , Proteínas de Ciclo Celular , Modelos Animales de Enfermedad , Transporte de Electrón/efectos de los fármacos , Transporte de Electrón/genética , Femenino , Depuradores de Radicales Libres/metabolismo , Lesiones Cardíacas/genética , Lesiones Cardíacas/patología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Vía de Señalización Hippo , Proteínas de Homeodominio/genética , Masculino , Ratones , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Factor 2 Relacionado con NF-E2/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Especies Reactivas de Oxígeno/metabolismo , Regeneración/efectos de los fármacos , Regeneración/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/genética , Proteínas Señalizadoras YAP , Proteína del Homeodomínio PITX2
5.
Circ Res ; 124(11): 1647-1657, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31120819

RESUMEN

After myocardial injury, cardiomyocyte loss cannot be corrected by using currently available clinical treatments. In recent years, considerable effort has been made to develop cell-based cardiac repair therapies aimed at correcting for this loss. An exciting crop of recent studies reveals that inducing endogenous repair and proliferation of cardiomyocytes may be a viable option for regenerating injured myocardium. Here, we review current heart failure treatments, the state of cardiomyocyte renewal in mammals, and the molecular signals that stimulate cardiomyocyte proliferation. These signals include growth factors, intrinsic signaling pathways, microRNAs, and cell cycle regulators. Animal model cardiac regeneration studies reveal that modulation of exogenous and cell-intrinsic signaling pathways can induce reentry of adult cardiomyocytes into the cell cycle. Using direct myocardial injection, epicardial patch delivery, or systemic administration of growth molecules, these studies show that inducing endogenous cardiomyocytes to self-renew is an exciting and promising therapeutic strategy to treat cardiac injury in humans.


Asunto(s)
Fármacos Cardiovasculares/uso terapéutico , Proliferación Celular/efectos de los fármacos , Insuficiencia Cardíaca/terapia , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/trasplante , Regeneración/efectos de los fármacos , Trasplante de Células Madre , Animales , Fármacos Cardiovasculares/efectos adversos , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Recuperación de la Función , Transducción de Señal , Trasplante de Células Madre/efectos adversos , Resultado del Tratamiento
6.
Development ; 140(23): 4683-90, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24255096

RESUMEN

Heart failure due to cardiomyocyte loss after ischemic heart disease is the leading cause of death in the United States in large part because heart muscle regenerates poorly. The endogenous mechanisms preventing mammalian cardiomyocyte regeneration are poorly understood. Hippo signaling, an ancient organ size control pathway, is a kinase cascade that inhibits developing cardiomyocyte proliferation but it has not been studied postnatally or in fully mature adult cardiomyocytes. Here, we investigated Hippo signaling in adult cardiomyocyte renewal and regeneration. We found that unstressed Hippo-deficient adult mouse cardiomyocytes re-enter the cell cycle and undergo cytokinesis. Moreover, Hippo deficiency enhances cardiomyocyte regeneration with functional recovery after adult myocardial infarction as well as after postnatal day eight (P8) cardiac apex resection and P8 myocardial infarction. In damaged hearts, Hippo mutant cardiomyocytes also have elevated proliferation. Our findings reveal that Hippo signaling is an endogenous repressor of adult cardiomyocyte renewal and regeneration. Targeting the Hippo pathway in human disease might be beneficial for the treatment of heart disease.


Asunto(s)
Corazón/fisiología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Regeneración/fisiología , Animales , Ciclo Celular , Línea Celular , Proliferación Celular , Vía de Señalización Hippo , Ratones , Ratones Transgénicos , Infarto del Miocardio , Miocitos Cardíacos/citología , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal
7.
Cell Mol Life Sci ; 69(8): 1377-89, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22130515

RESUMEN

A key step in heart development is the coordinated development of the atrioventricular canal (AVC), the constriction between the atria and ventricles that electrically and physically separates the chambers, and the development of the atrioventricular valves that ensure unidirectional blood flow. Using knock-out and inducible overexpression mouse models, we provide evidence that the developmentally important T-box factors Tbx2 and Tbx3, in a functionally redundant manner, maintain the AVC myocardium phenotype during the process of chamber differentiation. Expression profiling and ChIP-sequencing analysis of Tbx3 revealed that it directly interacts with and represses chamber myocardial genes, and induces the atrioventricular pacemaker-like phenotype by activating relevant genes. Moreover, mutant mice lacking 3 or 4 functional alleles of Tbx2 and Tbx3 failed to form atrioventricular cushions, precursors of the valves and septa. Tbx2 and Tbx3 trigger development of the cushions through a regulatory feed-forward loop with Bmp2, thus providing a mechanism for the co-localization and coordination of these important processes in heart development.


Asunto(s)
Cojinetes Endocárdicos/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Dominio T Box/metabolismo , Animales , Secuencia de Bases , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Cojinetes Endocárdicos/metabolismo , Humanos , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Miocardio/metabolismo , Ratas , Proteínas de Dominio T Box/genética , Regulación hacia Arriba
8.
Sci Transl Med ; 13(600)2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193613

RESUMEN

Human heart failure, a leading cause of death worldwide, is a prominent example of a chronic disease that may result from poor cell renewal. The Hippo signaling pathway is an inhibitory kinase cascade that represses adult heart muscle cell (cardiomyocyte) proliferation and renewal after myocardial infarction in genetically modified mice. Here, we investigated an adeno-associated virus 9 (AAV9)-based gene therapy to locally knock down the Hippo pathway gene Salvador (Sav) in border zone cardiomyocytes in a pig model of ischemia/reperfusion-induced myocardial infarction. Two weeks after myocardial infarction, when pigs had left ventricular systolic dysfunction, we administered AAV9-Sav-short hairpin RNA (shRNA) or a control AAV9 viral vector carrying green fluorescent protein (GFP) directly into border zone cardiomyocytes via catheter-mediated subendocardial injection. Three months after injection, pig hearts treated with a high dose of AAV9-Sav-shRNA exhibited a 14.3% improvement in ejection fraction (a measure of left ventricular systolic function), evidence of cardiomyocyte division, and reduced scar sizes compared to pigs receiving AAV9-GFP. AAV9-Sav-shRNA-treated pig hearts also displayed increased capillary density and reduced cardiomyocyte ploidy. AAV9-Sav-shRNA gene therapy was well tolerated and did not induce mortality. In addition, liver and lung pathology revealed no tumor formation. Local delivery of AAV9-Sav-shRNA gene therapy to border zone cardiomyocytes in pig hearts after myocardial infarction resulted in tissue renewal and improved function and may have utility in treating heart failure.


Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Terapia Genética , Ratones , Infarto del Miocardio/terapia , Transducción de Señal , Porcinos
9.
Artículo en Inglés | MEDLINE | ID: mdl-31615785

RESUMEN

Within the realm of zoological study, the question of how an organism reaches a specific size has been largely unexplored. Recently, studies performed to understand the regulation of organ size have revealed that both cellular signals and external cues contribute toward the determination of total cell mass within each organ. The establishment of final organ size requires the precise coordination of cell growth, proliferation, and survival throughout development and postnatal life. In the mammalian heart, the regulation of size is biphasic. During development, cardiomyocyte proliferation predominantly determines cardiac growth, whereas in the adult heart, total cell mass is governed by signals that regulate cardiac hypertrophy. Here, we review the current state of knowledge regarding the extrinsic factors and intrinsic mechanisms that control heart size during development. We also discuss the metabolic switch that occurs in the heart after birth and precedes homeostatic control of postnatal heart size.


Asunto(s)
Cardiomegalia/metabolismo , Corazón/crecimiento & desarrollo , Corazón/fisiología , Hipertrofia/patología , Zoología/métodos , Animales , Ciclo Celular , Proliferación Celular , Supervivencia Celular , Humanos , Miocardio/metabolismo , Miocitos Cardíacos/citología , Tamaño de los Órganos , Organogénesis , Transducción de Señal , Somatomedinas/metabolismo
10.
Dev Cell ; 48(6): 765-779.e7, 2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30773489

RESUMEN

Specialized adult somatic cells, such as cardiomyocytes (CMs), are highly differentiated with poor renewal capacity, an integral reason underlying organ failure in disease and aging. Among the least renewable cells in the human body, CMs renew approximately 1% annually. Consistent with poor CM turnover, heart failure is the leading cause of death. Here, we show that an active version of the Hippo pathway effector YAP, termed YAP5SA, partially reprograms adult mouse CMs to a more fetal and proliferative state. One week after induction, 19% of CMs that enter S-phase do so twice, CM number increases by 40%, and YAP5SA lineage CMs couple to pre-existing CMs. Genomic studies showed that YAP5SA increases chromatin accessibility and expression of fetal genes, partially reprogramming long-lived somatic cells in vivo to a primitive, fetal-like, and proliferative state.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Envejecimiento/fisiología , Cromatina/metabolismo , Corazón/crecimiento & desarrollo , Organogénesis , Fosfoproteínas/metabolismo , Potenciales de Acción , Animales , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Ciclo Celular , Proteínas de Ciclo Celular , Linaje de la Célula , Proliferación Celular , Diploidia , Elementos de Facilitación Genéticos/genética , Mutación con Ganancia de Función/genética , Regulación del Desarrollo de la Expresión Génica , Ventrículos Cardíacos/anatomía & histología , Ratones Transgénicos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Organogénesis/genética , Regiones Promotoras Genéticas/genética , Factor de Transcripción AP-1/metabolismo , Transgenes , Proteínas Señalizadoras YAP
12.
Nat Rev Cardiol ; 15(11): 672-684, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30111784

RESUMEN

The Hippo-YAP (Yes-associated protein) pathway is an evolutionarily and functionally conserved regulator of organ size and growth with crucial roles in cell proliferation, apoptosis, and differentiation. This pathway has great potential for therapeutic manipulation in different disease states and to promote organ regeneration. In this Review, we summarize findings from the past decade revealing the function and regulation of the Hippo-YAP pathway in cardiac development, growth, homeostasis, disease, and regeneration. In particular, we highlight the roles of the Hippo-YAP pathway in endogenous heart muscle renewal, including the pivotal role of the Hippo-YAP pathway in regulating cardiomyocyte proliferation and differentiation, stress response, and mechanical signalling. The human heart lacks the capacity to self-repair; therefore, the loss of cardiomyocytes after injury such as myocardial infarction can result in heart failure and death. Despite substantial advances in the treatment of heart failure, an enormous unmet clinical need exists for alternative treatment options. Targeting the Hippo-YAP pathway has tremendous potential for developing therapeutic strategies for cardiac repair and regeneration for currently intractable cardiovascular diseases such as heart failure. The lessons learned from cardiac repair and regeneration studies will also bring new insights into the regeneration of other tissues with limited regenerative capacity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cardiopatías/metabolismo , Miocitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Regeneración , Transducción de Señal , Animales , Diferenciación Celular , Proliferación Celular , Corazón Fetal/crecimiento & desarrollo , Corazón Fetal/metabolismo , Cardiopatías/patología , Cardiopatías/fisiopatología , Vía de Señalización Hippo , Humanos , Miocitos Cardíacos/patología , Organogénesis , Factores de Transcripción , Proteínas Señalizadoras YAP
13.
Sci Signal ; 8(375): ra41, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25943351

RESUMEN

The mammalian heart regenerates poorly, and damage commonly leads to heart failure. Hippo signaling is an evolutionarily conserved kinase cascade that regulates organ size during development and prevents adult mammalian cardiomyocyte regeneration by inhibiting the transcriptional coactivator Yap, which also responds to mechanical signaling in cultured cells to promote cell proliferation. To identify Yap target genes that are activated during cardiomyocyte renewal and regeneration, we performed Yap chromatin immunoprecipitation sequencing (ChIP-Seq) and mRNA expression profiling in Hippo signaling-deficient mouse hearts. We found that Yap directly regulated genes encoding cell cycle progression proteins, as well as genes encoding proteins that promote F-actin polymerization and that link the actin cytoskeleton to the extracellular matrix. Included in the latter group were components of the dystrophin glycoprotein complex, a large molecular complex that, when defective, results in muscular dystrophy in humans. Cardiomyocytes near the scar tissue of injured Hippo signaling-deficient mouse hearts showed cellular protrusions suggestive of cytoskeletal remodeling. The hearts of mdx mutant mice, which lack functional dystrophin and are a model for muscular dystrophy, showed impaired regeneration and cytoskeleton remodeling, but normal cardiomyocyte proliferation, after injury. Our data showed that, in addition to genes encoding cell cycle progression proteins, Yap regulated genes that enhance cytoskeletal remodeling. Thus, blocking the Hippo pathway input to Yap may tip the balance so that Yap responds to mechanical changes associated with heart injury to promote repair.


Asunto(s)
Actinas/metabolismo , Proliferación Celular/fisiología , Citoesqueleto/metabolismo , Corazón/fisiología , Miocitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Regeneración/fisiología , Actinas/genética , Animales , Citoesqueleto/genética , Vía de Señalización Hippo , Humanos , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/fisiología
14.
Cancer Res ; 74(15): 4170-82, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24906622

RESUMEN

Cancer stem cells (CSC) are purported to initiate and maintain tumor growth. Deregulation of normal stem cell signaling may lead to the generation of CSCs; however, the molecular determinants of this process remain poorly understood. Here we show that the transcriptional coactivator YAP1 is a major determinant of CSC properties in nontransformed cells and in esophageal cancer cells by direct upregulation of SOX9. YAP1 regulates the transcription of SOX9 through a conserved TEAD binding site in the SOX9 promoter. Expression of exogenous YAP1 in vitro or inhibition of its upstream negative regulators in vivo results in elevated SOX9 expression accompanied by the acquisition of CSC properties. Conversely, shRNA-mediated knockdown of YAP1 or SOX9 in transformed cells attenuates CSC phenotypes in vitro and tumorigenicity in vivo. The small-molecule inhibitor of YAP1, verteporfin, significantly blocks CSC properties in cells with high YAP1 and a high proportion of ALDH1(+). Our findings identify YAP1-driven SOX9 expression as a critical event in the acquisition of CSC properties, suggesting that YAP1 inhibition may offer an effective means of therapeutically targeting the CSC population.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Fosfoproteínas/metabolismo , Factor de Transcripción SOX9/metabolismo , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apoptosis/fisiología , Modelos Animales de Enfermedad , Neoplasias Esofágicas/genética , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Fosfoproteínas/biosíntesis , Fosfoproteínas/genética , Factor de Transcripción SOX9/biosíntesis , Factor de Transcripción SOX9/genética , Factores de Transcripción , Activación Transcripcional , Transfección , Regulación hacia Arriba , Proteínas Señalizadoras YAP
16.
Science ; 332(6028): 458-61, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21512031

RESUMEN

Genetic regulation of mammalian heart size is poorly understood. Hippo signaling represents an organ-size control pathway in Drosophila, where it also inhibits cell proliferation and promotes apoptosis in imaginal discs. To determine whether Hippo signaling controls mammalian heart size, we inactivated Hippo pathway components in the developing mouse heart. Hippo-deficient embryos had overgrown hearts with elevated cardiomyocyte proliferation. Gene expression profiling and chromatin immunoprecipitation revealed that Hippo signaling negatively regulates a subset of Wnt target genes. Genetic interaction studies indicated that ß-catenin heterozygosity suppressed the Hippo cardiomyocyte overgrowth phenotype. Furthermore, the Hippo effector Yap interacts with ß-catenin on Sox2 and Snai2 genes. These data uncover a nuclear interaction between Hippo and Wnt signaling that restricts cardiomyocyte proliferation and controls heart size.


Asunto(s)
Corazón/anatomía & histología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Cardiomegalia/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proliferación Celular , Inmunoprecipitación de Cromatina , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Ratones , Ratones Transgénicos , Miocardio/citología , Tamaño de los Órganos , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Serina-Treonina Quinasa 3 , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP , beta Catenina/genética , beta Catenina/metabolismo
17.
Dev Cell ; 15(4): 603-16, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18854144

RESUMEN

The Aurora B kinase is the enzymatic core of the chromosomal passenger complex, which is a critical regulator of mitosis. To identify novel regulators of Aurora B, we performed a genome-wide screen for suppressors of a temperature-sensitive lethal allele of the C. elegans Aurora B kinase AIR-2. This screen uncovered a member of the Afg2/Spaf subfamily of Cdc48-like AAA ATPases as an essential inhibitor of AIR-2 stability and activity. Depletion of CDC-48.3 restores viability to air-2 mutant embryos and leads to abnormally high AIR-2 levels at the late telophase/G1 transition. Furthermore, CDC-48.3 binds directly to AIR-2 and inhibits its kinase activity from metaphase through telophase. While canonical p97/Cdc48 proteins have been assigned contradictory roles in the regulation of Aurora B, our results identify a member of the Afg2/Spaf AAA ATPases as a critical in vivo inhibitor of this kinase during embryonic development.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Caenorhabditis elegans/fisiología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Adenosina Trifosfatasas/genética , Alelos , Sustitución de Aminoácidos , Animales , Aurora Quinasa B , Aurora Quinasas , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Glutatión Transferasa/metabolismo , Lisina/metabolismo , Mitosis , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Interferencia de ARN , Proteínas Recombinantes/metabolismo , Temperatura , Proteína que Contiene Valosina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA