RESUMEN
BACKGROUND: Little data exists on electrogram sensing in current generation of miniaturized insertable cardiac monitors (ICMs). OBJECTIVE: To compare the sensing capability of ICM with different vector length: Medtronic Reveal LINQ (~40 mm) vs. Biotronik Biomonitor III (BM-III, ~70 mm). METHODS: De-identified remote monitoring transmissions from n = 40 patients with BM-III were compared with n = 80 gender and body mass index (BMI)-matched patients with Reveal LINQ. Digital measurement of P- and R-wave amplitude from calibrated ICM electrograms was undertaken by 3 investigators independently. Further, we evaluated the impact of BMI and gender on P-wave visibility. RESULTS: Patients in both groups were well matched for gender and BMI (53% male, mean BMI 26.7 kg/m2, both p = NS). Median P- and R-wave amplitude were 97% & 56% larger in the BM-III vs. LINQ [0.065 (IQR 0.039-0.10) vs. 0.033 (IQR 0.022-0.050) mV, p < .0001; & 0.78 (IQR 0.52-1.10) vs. 0.50 (IQR 0.41-0.89) mV, p = .012 respectively). The P/R-wave ratio was 36% greater with the BM-III (p < .001). The 25th percentile of P-wave amplitude for all 120 patients was .026 mV. Logistic regression analysis showed BM-III was more likely than LINQ to have P-wave amplitude ≥.026 mV (OR 7.47, 95%CI 1.965-29.42, p = .003), and increasing BMI was negatively associated with P-wave amplitude ≥.026 mV (OR 0.84, 95%CI 0.75-0.95, p = .004). However, gender was not significantly associated with P-wave amplitude ≥.026 mV (p = .37). CONCLUSION: The longer ICM sensing vector of BM-III yielded larger overall P- and R- wave amplitude than LINQ. Both longer sensing vector and lower BMI were independently associated with greater P-wave visibility.
Asunto(s)
Electrocardiografía Ambulatoria , Electrocardiografía , Femenino , Humanos , MasculinoRESUMEN
A 72-year-old woman with a dual-chamber implantable cardioverter-defibrillator (Biotronik Lumax 540 DR-T) at elective replacement indicator presented for generator replacement. A new MicroPort generator (Platinium DR) was attached to her existing leads. Eight days later, multiple red alert messages were received on the Biotronik remote monitoring system from the explanted generator. Investigations revealed alert transmission via a CardioMessenger Smart mobile device registered to another patient that came into proximity of the explanted generator. The Biotronik remote monitoring system is unique in that red alerts could be sent through any CardioMessenger Smart device regardless of whether they were paired.
Asunto(s)
Desfibriladores Implantables , Insuficiencia Cardíaca , Anciano , Arritmias Cardíacas , Electrocardiografía , Electrónica , Femenino , HumanosRESUMEN
BACKGROUND: Fidelity of electrogram sensing may reduce false alerts from an insertable cardiac monitor (ICM). OBJECTIVE: The purpose of this study was to assess the effect of vector length, implant angle, and patient factors on electrogram sensing using surface electrocardiogram (ECG) mapping. METHODS: Twelve separate precordial single-lead surface ECGs were acquired from 150 participants at 2 interelectrode distances (75 and 45 mm), at 3 vector angles (vertical, oblique, and horizontal), and in 2 postures (upright and supine). A subset of 50 patients also received a clinically indicated ICM implant in 1:1 ratio (Reveal LINQ [Medtronic, Minneapolis, MN]/BIOMONITOR III [Biotronik, Berlin, Germany]). All ECGs and ICM electrograms were analyzed by blinded investigators using DigitizeIt software (V2.3.3, Braunschweig, Germany). The P-wave visibility threshold was set at > 0.015 mV. Logistic regression was used to identify factors affecting P-wave amplitude. RESULTS: A total of 1800 tracings from 150 participants (44.5% [n = 68] female; median age 59 [35-73] years) were assessed. The median P- and R-wave amplitudes were 45% and 53% larger with vector lengths of 75 and 45 mm, respectively (P < .001 for both). The oblique orientation yielded the best P- and R-wave amplitudes, while posture change did not affect P-wave amplitude. Mixed effects modeling found that visible P-waves occur more frequently with a vector length of 75 mm than with 45 mm (86% vs 75%, respectively; P < .0001). A longer vector length improved both P-wave amplitude and visibility in all body mass index categories. There was a moderate correlation of P- and R-wave amplitudes from the ICM electrograms to those from surface ECG recordings (intraclass correlation coefficient 0.74 and 0.80, respectively). CONCLUSION: Longer vector length and oblique implant angle yielded the best electrogram sensing and are relevant considerations for ICM implantation procedures.