Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 103(4): 1477-1489, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32412127

RESUMEN

The architecture of endosperm cell walls in Hordeum vulgare (barley) differs remarkably from that of other grass species and is affected by germination or malting. Here, the cell wall microstructure is investigated using (bio)chemical analyses, cryogenic scanning electron microscopy (cryo-SEM) and confocal laser scanning microscopy (CLSM) as the main techniques. The relative proportions of ß-glucan, arabinoxylan and pectin in cell walls were 61, 34 and 5%, respectively. The average thickness of a single endosperm cell wall was 0.30 µm, as estimated by the cryo-SEM analysis of barley seeds, which was reduced to 0.16 µm after malting. After fluorescent staining, 3D confocal multiphoton microscopy (multiphoton CLSM) imaging revealed the complex cell wall architecture. The endosperm cell wall is composed of a structure in which arabinoxylan and pectin are colocalized on the outside, with ß-glucan depositions on the inside. During germination, arabinoxylan and ß-glucan are hydrolysed, but unlike ß-glucan, arabinoxylan remains present in defined cell walls in malt. Integrating the results, an enhanced model for the endosperm cell walls in barley is proposed.


Asunto(s)
Pared Celular/metabolismo , Endospermo/metabolismo , Hordeum/metabolismo , Pectinas/metabolismo , Xilanos/metabolismo , beta-Glucanos/metabolismo , Pared Celular/ultraestructura , Microscopía por Crioelectrón , Endospermo/ultraestructura , Hordeum/ultraestructura , Microscopía Confocal , Microscopía Electrónica de Rastreo
2.
Methods ; 170: 82-89, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31252059

RESUMEN

How genomic DNA is organized in the nucleus is a long-standing question. We describe a single-molecule bioimaging method utilizing super-localization precision coupled to fully quantitative image analysis tools, towards determining snapshots of parts of the 3D genome architecture of model eukaryote budding yeast Saccharomyces cerevisiae with exceptional millisecond time resolution. We employ astigmatism imaging to enable robust extraction of 3D position data on genomically encoded fluorescent protein reporters that bind to DNA. Our relatively straightforward method enables snippets of 3D architectures of likely single genome conformations to be resolved captured via DNA-sequence specific binding proteins in single functional living cells.


Asunto(s)
Genoma Fúngico/genética , Imagenología Tridimensional/métodos , Microscopía Intravital/métodos , Imagen Individual de Molécula/métodos , Análisis de la Célula Individual/métodos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , Colorantes Fluorescentes/química , Genes Reporteros/genética , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Microscopía Fluorescente/métodos , Conformación de Ácido Nucleico , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Análisis Espacial
3.
Elife ; 62017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28841133

RESUMEN

Transcription is regulated through binding factors to gene promoters to activate or repress expression, however, the mechanisms by which factors find targets remain unclear. Using single-molecule fluorescence microscopy, we determined in vivo stoichiometry and spatiotemporal dynamics of a GFP tagged repressor, Mig1, from a paradigm signaling pathway of Saccharomyces cerevisiae. We find the repressor operates in clusters, which upon extracellular signal detection, translocate from the cytoplasm, bind to nuclear targets and turnover. Simulations of Mig1 configuration within a 3D yeast genome model combined with a promoter-specific, fluorescent translation reporter confirmed clusters are the functional unit of gene regulation. In vitro and structural analysis on reconstituted Mig1 suggests that clusters are stabilized by depletion forces between intrinsically disordered sequences. We observed similar clusters of a co-regulatory activator from a different pathway, supporting a generalized cluster model for transcription factors that reduces promoter search times through intersegment transfer while stabilizing gene expression.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transcripción Genética , Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Modelos Biológicos , Unión Proteica , Transporte de Proteínas , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Imagen Individual de Molécula , Análisis Espacio-Temporal , Coloración y Etiquetado
4.
Open Biol ; 5(4): 150019, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25924631

RESUMEN

Although not laying claim to being the inventor of the light microscope, Antonj van Leeuwenhoek (1632-1723) was arguably the first person to bring this new technological wonder of the age properly to the attention of natural scientists interested in the study of living things (people we might now term 'biologists'). He was a Dutch draper with no formal scientific training. From using magnifying glasses to observe threads in cloth, he went on to develop over 500 simple single lens microscopes (Baker & Leeuwenhoek 1739 Phil. Trans. 41, 503-519. (doi:10.1098/rstl.1739.0085)) which he used to observe many different biological samples. He communicated his finding to the Royal Society in a series of letters (Leeuwenhoek 1800 The select works of Antony Van Leeuwenhoek, containing his microscopical discoveries in many of the works of nature, vol. 1) including the one republished in this edition of Open Biology. Our review here begins with the work of van Leeuwenhoek before summarizing the key developments over the last ca 300 years, which has seen the light microscope evolve from a simple single lens device of van Leeuwenhoek's day into an instrument capable of observing the dynamics of single biological molecules inside living cells, and to tracking every cell nucleus in the development of whole embryos and plants.


Asunto(s)
Microbiología/historia , Microbiología/instrumentación , Microscopía/historia , Microscopía/tendencias , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Países Bajos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA