Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Haematologica ; 106(5): 1262-1277, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32165486

RESUMEN

Venetoclax is a promising agent in the treatment of acute myeloid leukemia, though its antileukemic activity is limited to combination therapies. Mcl-1 downregulation, Bim upregulation, and DNA damage have been identified as potential ways to enhance venetoclax activity. In this study, we combine venetoclax with the dual PI3K and histone deacetylase inhibitor CUDC-907, which can downregulate Mcl-1, upregulate Bim, and induce DNA damage, as well as downregulate c-Myc. We establish that CUDC-907 and venetoclax synergistically induce apoptosis in acute myeloid leukemia cell lines and primary acute myeloid leukemia patient samples ex vivo. CUDC-907 downregulates CHK1, Wee1, RRM1, and c-Myc, which were found to play a role in venetoclax-induced apoptosis. Interestingly, we found that venetoclax treatment enhances CUDC-907-induced DNA damage potentially through inhibition of DNA repair. In vivo results show that CUDC-907 enhances venetoclax efficacy in an acute myeloid leukemia cell line derived xenograft mouse model, supporting the development of CUDC-907 in combination with venetoclax for the treatment of acute myeloid leukemia.


Asunto(s)
Leucemia Mieloide Aguda , Fosfatidilinositol 3-Quinasas , Animales , Apoptosis , Compuestos Bicíclicos Heterocíclicos con Puentes , Línea Celular Tumoral , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Ratones , Morfolinas , Pirimidinas , Sulfonamidas , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Biochem Pharmacol ; 182: 114253, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33011159

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous disease with variable presentation, molecular phenotype, and cytogenetic abnormalities and has seen very little improvement in patient survival over the last few decades. This heterogeneity supports poor prognosis partially through the variability in response to the standard chemotherapy. Further understanding of molecular heterogeneity has promoted the development of novel treatments, some of which target mitochondrial metabolism and function. This review discusses the relative dependency that AML cells have on mitochondrial function, and the ability to pivot this reliance to target important subsets of AML cells, including leukemia stem cells (LSCs). LSCs are tumor-initiating cells that are resistant to standard chemotherapy and promote the persistence and relapse of AML. Historically, LSCs have been targeted based on immunophenotype, but recent developments in the understanding of LSC metabolism has demonstrated unique abilities to target LSCs while sparing normal hematopoietic stem cells (HSCs) through inhibition of mitochondrial function. Here we highlight the use of small molecules that have been demonstrated to effectively target mitochondrial function. IACS-010759 and ME-344 target the electron transport chain (ETC) to inhibit oxidative phosphorylation (OXPHOS). The imipridone family (ONC201, ONC206, ONC212) of inhibitors target mitochondria through activation of ClpP mitochondrial protease and reduce function of essential pathways. These molecules offer a new mechanism for developing clinical therapies in AML and support novel strategies to target LSCs in parallel with conventional therapies.


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Mitocondrias/metabolismo , Animales , Respiración de la Célula/efectos de los fármacos , Respiración de la Célula/fisiología , Sistemas de Liberación de Medicamentos/tendencias , Humanos , Mitocondrias/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo
3.
Signal Transduct Target Ther ; 5(1): 288, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33335095

RESUMEN

Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and the second most common form of acute leukemia in children. Despite this, very little improvement in survival rates has been achieved over the past few decades. This is partially due to the heterogeneity of AML and the need for more targeted therapeutics than the traditional cytotoxic chemotherapies that have been a mainstay in therapy for the past 50 years. In the past 20 years, research has been diversifying the approach to treating AML by investigating molecular pathways uniquely relevant to AML cell proliferation and survival. Here we review the development of novel therapeutics in targeting apoptosis, receptor tyrosine kinase (RTK) signaling, hedgehog (HH) pathway, mitochondrial function, DNA repair, and c-Myc signaling. There has been an impressive effort into better understanding the diversity of AML cell characteristics and here we highlight important preclinical studies that have supported therapeutic development and continue to promote new ways to target AML cells. In addition, we describe clinical investigations that have led to FDA approval of new targeted AML therapies and ongoing clinical trials of novel therapies targeting AML survival pathways. We also describe the complexity of targeting leukemia stem cells (LSCs) as an approach to addressing relapse and remission in AML and targetable pathways that are unique to LSC survival. This comprehensive review details what we currently understand about the signaling pathways that support AML cell survival and the exceptional ways in which we disrupt them.


Asunto(s)
Antineoplásicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Leucemia Mieloide Aguda , Transducción de Señal/efectos de los fármacos , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidad
4.
Int J Radiat Oncol Biol Phys ; 96(1): 161-9, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27511853

RESUMEN

PURPOSE: To assess the efficacy of 3-week schedules of low-dose pulsed radiation treatment (PRT) and standard radiation therapy (SRT), with concurrent cisplatin (CDDP) in a head and neck squamous cell carcinoma xenograft model. METHODS AND MATERIALS: Subcutaneous UT-SCC-14 tumors were established in athymic NIH III HO female mice. A total of 30 Gy was administered as 2 Gy/d, 5 d/wk for 3 weeks, either by PRT (10 × 0.2 Gy/d, with a 3-minute break between each 0.2-Gy dose) or SRT (2 Gy/d, uninterrupted delivery) in combination with concurrent 2 mg/kg CDDP 3 times per week in the final 2 weeks of radiation therapy. Treatment-induced growth delays were defined from twice-weekly tumor volume measurements. Tumor hypoxia was assessed by (18)F-fluoromisonidazole positron emission tomography imaging, and calculated maximum standardized uptake values compared with tumor histology. Tumor vessel density and hypoxia were measured by quantitative immunohistochemistry. Normal tissues effects were evaluated in gut and skin. RESULTS: Untreated tumors grew to 1000 mm(3) in 25.4 days (±1.2), compared with delays of 62.3 days (±3.5) for SRT + CDDP and 80.2 days (±5.0) for PRT + CDDP. Time to reach 2× pretreatment volume ranged from 8.2 days (±1.8) for untreated tumors to 67.1 days (±4.7) after PRT + CDDP. Significant differences in tumor growth delay were observed for SRT versus SRT + CDDP (P=.04), PRT versus PRT + CDDP (P=.035), and SRT + CDDP versus PRT + CDDP (P=.033), and for survival between PRT versus PRT + CDDP (P=.017) and SRT + CDDP versus PRT + CDDP (P=.008). Differences in tumor hypoxia were evident by (18)F-fluoromisonidazole positron emission tomography imaging between SRT and PRT (P=.025), although not with concurrent CDDP. Tumor vessel density differed between SRT + CDDP and PRT + CDDP (P=.011). No differences in normal tissue parameters were seen. CONCLUSIONS: Concurrent CDDP was more effective in combination PRT than SRT at restricting tumor growth. Significant differences in tumor vascular density were evident between PRT and SRT, suggesting a preservation of vascular network with PRT.


Asunto(s)
Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/terapia , Quimioradioterapia/métodos , Cisplatino/administración & dosificación , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/terapia , Radioterapia Conformacional/métodos , Animales , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Femenino , Ratones , Dosificación Radioterapéutica , Carcinoma de Células Escamosas de Cabeza y Cuello , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA