Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nature ; 555(7694): 61-66, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29466338

RESUMEN

Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring defined binding sites or interactions between specific individual residues. Proteome-wide sequence analysis suggests that this interaction mechanism may be abundant in eukaryotes.


Asunto(s)
Histonas/química , Histonas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Timosina/análogos & derivados , Sitios de Unión , Humanos , Unión Proteica , Electricidad Estática , Timosina/química , Timosina/metabolismo
2.
J Am Chem Soc ; 145(28): 15188-15196, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37411010

RESUMEN

Small Heat Shock Proteins (sHSPs) are key components of our Protein Quality Control system and are thought to act as reservoirs that neutralize irreversible protein aggregation. Yet, sHSPs can also act as sequestrases, promoting protein sequestration into aggregates, thus challenging our understanding of their exact mechanisms of action. Here, we employ optical tweezers to explore the mechanisms of action of the human small heat shock protein HSPB8 and its pathogenic mutant K141E, which is associated with neuromuscular disease. Through single-molecule manipulation experiments, we studied how HSPB8 and its K141E mutant affect the refolding and aggregation processes of the maltose binding protein. Our data show that HSPB8 selectively suppresses protein aggregation without affecting the native folding process. This anti-aggregation mechanism is distinct from previous models that rely on the stabilization of unfolded polypeptide chains or partially folded structures, as has been reported for other chaperones. Rather, it appears that HSPB8 selectively recognizes and binds to aggregated species formed at the early stages of aggregation, preventing them from growing into larger aggregated structures. Consistently, the K141E mutation specifically targets the affinity for aggregated structures without impacting native folding, and hence impairs its anti-aggregation activity.


Asunto(s)
Proteínas de Choque Térmico Pequeñas , Agregado de Proteínas , Humanos , Proteínas de Choque Térmico Pequeñas/metabolismo , Mutación , Pliegue de Proteína
3.
Chemistry ; 29(21): e202203369, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-36648282

RESUMEN

Eukaryotic transcription factors (TFs) are the final integrators of a complex molecular feedback mechanism that interfaces with the genome, consolidating information for transcriptional regulation. TFs consist of both structured DNA-binding domains and long intrinsically disordered regions (IDRs) embedded with motifs linked to transcriptional control. It is now well established that the dynamic multifunctionality of IDRs is the basis for a wide spectrum of TF functions necessary to navigate and regulate the human genome. This review dissects the chemical features of TF IDRs that endow them with structural plasticity that is central to their functions in the nucleus. Sequence analysis of a set of over 1600 human TFs through AlphaFold was used to identify key features of their IDRs. Recent studies were then highlighted to illustrate IDR involvement in processes such as protein interactions, DNA binding and specificity, chromatin opening, and phase separation. To expand our understanding of TF functions, future directions are suggested for integrating experiments and simulations, from in vitro to living systems.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Factores de Transcripción , Humanos , Factores de Transcripción/química , Proteínas Intrínsecamente Desordenadas/química , Eucariontes/metabolismo , ADN
4.
Cell Mol Life Sci ; 78(5): 2263-2278, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32936312

RESUMEN

Understanding the interplay between sequence, structure and function of proteins has been complicated in recent years by the discovery of intrinsically disordered proteins (IDPs), which perform biological functions in the absence of a well-defined three-dimensional fold. Disordered protein sequences account for roughly 30% of the human proteome and in many proteins, disordered and ordered domains coexist. However, few studies have assessed how either feature affects the properties of the other. In this study, we examine the role of a disordered tail in the overall properties of the two-domain, calcium-sensing protein neuronal calcium sensor 1 (NCS-1). We show that loss of just six of the 190 residues at the flexible C-terminus is sufficient to severely affect stability, dynamics, and folding behavior of both ordered domains. We identify specific hydrophobic contacts mediated by the disordered tail that may be responsible for stabilizing the distal N-terminal domain. Moreover, sequence analyses indicate the presence of an LSL-motif in the tail that acts as a mimic of native ligands critical to the observed order-disorder communication. Removing the disordered tail leads to a shorter life-time of the ligand-bound complex likely originating from the observed destabilization. This close relationship between order and disorder may have important implications for how investigations into mixed systems are designed and opens up a novel avenue of drug targeting exploiting this type of behavior.


Asunto(s)
Proteínas Portadoras/química , Proteínas Intrínsecamente Desordenadas/química , Proteínas Sensoras del Calcio Neuronal/química , Neuropéptidos/química , Dominios Proteicos , Secuencia de Aminoácidos , Sitios de Unión/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Cinética , Ligandos , Modelos Moleculares , Mutación , Proteínas Sensoras del Calcio Neuronal/genética , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Estabilidad Proteica , Termodinámica
5.
Biophys J ; 119(9): 1821-1832, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33080224

RESUMEN

Binding of ligands is often crucial for function yet the effects of ligand binding on the mechanical stability and energy landscape of proteins are incompletely understood. Here, we use a combination of single-molecule optical tweezers and MD simulations to investigate the effect of ligand binding on the energy landscape of acyl-coenzyme A (CoA)-binding protein (ACBP). ACBP is a topologically simple and highly conserved four-α-helix bundle protein that acts as an intracellular transporter and buffer for fatty-acyl-CoA and is active in membrane assembly. We have previously described the behavior of ACBP under tension, revealing a highly extended transition state (TS) located almost halfway between the unfolded and native states. Here, we performed force-ramp and force-jump experiments, in combination with advanced statistical analysis, to show that octanoyl-CoA binding increases the activation free energy for the unfolding reaction of ACBP without affecting the position of the transition state along the reaction coordinate. It follows that ligand binding enhances the mechanical resistance and thermodynamic stability of the protein, without changing its mechanical compliance. Steered molecular dynamics simulations allowed us to rationalize the results in terms of key interactions that octanoyl-CoA establishes with the four α-helices of ACBP and showed that the unfolding pathway is marginally affected by the ligand. The results show that ligand-induced mechanical stabilization effects can be complex and may prove useful for the rational design of stabilizing ligands.


Asunto(s)
Inhibidor de la Unión a Diazepam , Proteínas , Inhibidor de la Unión a Diazepam/metabolismo , Ligandos , Simulación de Dinámica Molecular , Unión Proteica
6.
Proc Natl Acad Sci U S A ; 111(36): 13069-74, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-25157171

RESUMEN

Neurodegenerative disorders are strongly linked to protein misfolding, and crucial to their explication is a detailed understanding of the underlying structural rearrangements and pathways that govern the formation of misfolded states. Here we use single-molecule optical tweezers to monitor misfolding reactions of the human neuronal calcium sensor-1, a multispecific EF-hand protein involved in neurotransmitter release and linked to severe neurological diseases. We directly observed two misfolding trajectories leading to distinct kinetically trapped misfolded conformations. Both trajectories originate from an on-pathway intermediate state and compete with native folding in a calcium-dependent manner. The relative probability of the different trajectories could be affected by modulating the relaxation rate of applied force, demonstrating an unprecedented real-time control over the free-energy landscape of a protein. Constant-force experiments in combination with hidden Markov analysis revealed the free-energy landscape of the misfolding transitions under both physiological and pathological calcium concentrations. Remarkably for a calcium sensor, we found that higher calcium concentrations increased the lifetimes of the misfolded conformations, slowing productive folding to the native state. We propose a rugged, multidimensional energy landscape for neuronal calcium sensor-1 and speculate on a direct link between protein misfolding and calcium dysregulation that could play a role in neurodegeneration.


Asunto(s)
Calcio/metabolismo , Proteínas Sensoras del Calcio Neuronal/química , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/química , Neuropéptidos/metabolismo , Pinzas Ópticas , Pliegue de Proteína , Humanos , Cinética , Termodinámica
7.
Biophys J ; 109(1): 113-23, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26153708

RESUMEN

Neuronal calcium sensor-1 (NCS-1) is the primordial member of a family of proteins responsible primarily for sensing changes in neuronal Ca(2+) concentration. NCS-1 is a multispecific protein interacting with a number of binding partners in both calcium-dependent and independent manners, and acting in a variety of cellular processes in which it has been linked to a number of disorders such as schizophrenia and autism. Despite extensive studies on the Ca(2+)-activated state of NCS proteins, little is known about the conformational dynamics of the Mg(2+)-bound and apo states, both of which are populated, at least transiently, at resting Ca(2+) conditions. Here, we used optical tweezers to study the folding behavior of individual NCS-1 molecules in the presence of Mg(2+) and in the absence of divalent ions. Under tension, the Mg(2+)-bound state of NCS-1 unfolds and refolds in a three-state process by populating one intermediate state consisting of a folded C-domain and an unfolded N-domain. The interconversion at equilibrium between the different molecular states populated by NCS-1 was monitored in real time through constant-force measurements and the energy landscapes underlying the observed transitions were reconstructed through hidden Markov model analysis. Unlike what has been observed with the Ca(2+)-bound state, the presence of Mg(2+) allows both the N- and C-domain to fold through all-or-none transitions with similar refolding rates. In the absence of divalent ions, NCS-1 unfolds and refolds reversibly in a two-state reaction involving only the C-domain, whereas the N-domain has no detectable transitions. Overall, the results allowed us to trace the progression of NCS-1 folding along its energy landscapes and provided a solid platform for understanding the conformational dynamics of similar EF-hand proteins.


Asunto(s)
Magnesio/química , Proteínas Sensoras del Calcio Neuronal/química , Neuropéptidos/química , Pliegue de Proteína , Cationes Bivalentes/química , Simulación por Computador , Escherichia coli , Humanos , Cinética , Cadenas de Markov , Pinzas Ópticas , Análisis Espectral , Termodinámica
8.
J Biol Chem ; 289(36): 25327-40, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25023278

RESUMEN

PDZ domain proteins control multiple cellular functions by governing assembly of protein complexes. It remains unknown why individual PDZ domains can bind the extreme C terminus of very diverse binding partners and maintain selectivity. By employing NMR spectroscopy, together with molecular modeling, mutational analysis, and fluorescent polarization binding experiments, we identify here three structural mechanisms explaining why the PDZ domain of PICK1 selectively binds >30 receptors, transporters, and kinases. Class II ligands, including the dopamine transporter, adopt a canonical binding mode with promiscuity obtained via differential packing in the binding groove. Class I ligands, such as protein kinase Cα, depend on residues upstream from the canonical binding sequence that are likely to interact with flexible loop residues of the PDZ domain. Finally, we obtain evidence that the unconventional ligand ASIC1a has a dual binding mode involving a canonical insertion and a noncanonical internal insertion with the two C-terminal residues forming interactions outside the groove. Together with an evolutionary analysis, the data show how unconventional binding modes might evolve for a protein recognition domain to expand the repertoire of functionally important interactions.


Asunto(s)
Proteínas Portadoras/química , Simulación del Acoplamiento Molecular/métodos , Proteínas Nucleares/química , Dominios PDZ , Secuencia de Aminoácidos , Sitios de Unión/genética , Unión Competitiva , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Polarización de Fluorescencia , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Proteína Quinasa C-alfa/química , Proteína Quinasa C-alfa/genética , Proteína Quinasa C-alfa/metabolismo
9.
Nucleic Acids Res ; 41(5): 3424-35, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23325851

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR) form the basis of diverse adaptive immune systems directed primarily against invading genetic elements of archaea and bacteria. Cbp1 of the crenarchaeal thermoacidophilic order Sulfolobales, carrying three imperfect repeats, binds specifically to CRISPR DNA repeats and has been implicated in facilitating production of long transcripts from CRISPR loci. Here, a second related class of CRISPR DNA repeat-binding protein, denoted Cbp2, is characterized that contains two imperfect repeats and is found amongst members of the crenarchaeal thermoneutrophilic order Desulfurococcales. DNA repeat-binding properties of the Hyperthermus butylicus protein Cbp2Hb were characterized and its three-dimensional structure was determined by NMR spectroscopy. The two repeats generate helix-turn-helix structures separated by a basic linker that is implicated in facilitating high affinity DNA binding of Cbp2 by tethering the two domains. Structural studies on mutant proteins provide support for Cys(7) and Cys(28) enhancing high thermal stability of Cbp2Hb through disulphide bridge formation. Consistent with their proposed CRISPR transcriptional regulatory role, Cbp2Hb and, by inference, other Cbp1 and Cbp2 proteins are closely related in structure to homeodomain proteins with linked helix-turn-helix (HTH) domains, in particular the paired domain Pax and Myb family proteins that are involved in eukaryal transcriptional regulation.


Asunto(s)
Proteínas Arqueales/química , Crenarchaeota , Proteínas de Homeodominio/química , Secuencia de Aminoácidos , Secuencia de Consenso , ADN de Archaea/química , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Filogenia , Unión Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína , Secuencias Repetitivas de Ácidos Nucleicos , Homología de Secuencia de Aminoácido , Soluciones , Homología Estructural de Proteína , Termodinámica
10.
Nat Commun ; 15(1): 1445, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365983

RESUMEN

More than 1600 human transcription factors orchestrate the transcriptional machinery to control gene expression and cell fate. Their function is conveyed through intrinsically disordered regions (IDRs) containing activation or repression domains but lacking quantitative structural ensemble models prevents their mechanistic decoding. Here we integrate single-molecule FRET and NMR spectroscopy with molecular simulations showing that DNA binding can lead to complex changes in the IDR ensemble and accessibility. The C-terminal IDR of pioneer factor Sox2 is highly disordered but its conformational dynamics are guided by weak and dynamic charge interactions with the folded DNA binding domain. Both DNA and nucleosome binding induce major rearrangements in the IDR ensemble without affecting DNA binding affinity. Remarkably, interdomain interactions are redistributed in complex with DNA leading to variable exposure of two activation domains critical for transcription. Charged intramolecular interactions allowing for dynamic redistributions may be common in transcription factors and necessary for sensitive tuning of structural ensembles.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Factores de Transcripción SOXB1 , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Espectroscopía de Resonancia Magnética , Conformación Proteica , Dominios Proteicos , Factores de Transcripción/genética , Factores de Transcripción/química , Factores de Transcripción SOXB1/química , Factores de Transcripción SOXB1/genética
11.
bioRxiv ; 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37786677

RESUMEN

MITF, a basic-Helix-Loop-Helix Zipper (bHLHZip) transcription factor, plays vital roles in melanocyte development and functions as an oncogene. To explore MITF regulation and its role in melanoma, we conducted a genetic screen for suppressors of the Mitf-associated pigmentation phenotype. An intragenic Mitf mutation was identified, leading to termination of MITF at the K316 SUMOylation site and loss of the C-end intrinsically disordered region (IDR). The resulting protein is more nuclear but less stable than wild-type MITF and retains DNA-binding ability. Interestingly, as a dimer, it can translocate wild-type and mutant MITF partners into the nucleus, improving its own stability and ensuring an active nuclear MITF supply. Interactions between K316 SUMOylation and S409 phosphorylation sites across monomers largely explain the observed effects. Notably, the recurrent melanoma-associated E318K mutation in MITF, which affects K316 SUMOylation, also alters protein regulation in concert with S409, unraveling a novel regulatory mechanism with unexpected disease insights.

12.
J Am Chem Soc ; 134(41): 17068-75, 2012 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-23004011

RESUMEN

The mechanical properties of proteins and their force-induced structural changes play key roles in many biological processes. Previous studies have shown that natively folded proteins are brittle under tension, unfolding after small mechanical deformations, while partially folded intermediate states, such as molten globules, are compliant and can deform elastically a great amount before crossing the transition state barrier. Moreover, under tension proteins appear to unfold through a different sequence of events than during spontaneous unfolding. Here, we describe the response to force of the four-α-helix acyl-CoA binding protein (ACBP) in the low-force regime using optical tweezers and ratcheted molecular dynamics simulations. The results of our studies reveal an unprecedented mechanical behavior of a natively folded protein. ACBP displays an atypical compliance along two nearly orthogonal pulling axes, with transition states located almost halfway between the unfolded and folded states. Surprisingly, the deformability of ACBP is greater than that observed for the highly pliant molten globule intermediate states. Furthermore, when manipulated from the N- and C-termini, ACBP unfolds by populating a transition state that resembles that observed during chemical denaturation, both for structure and position along the reaction coordinate. Our data provide the first experimental evidence of a spontaneous-like mechanical unfolding pathway of a protein. The mechanical behavior of ACBP is discussed in terms of topology and helix propensity.


Asunto(s)
Inhibidor de la Unión a Diazepam/química , Simulación de Dinámica Molecular , Inhibidor de la Unión a Diazepam/aislamiento & purificación , Modelos Moleculares , Desplegamiento Proteico
13.
Nat Chem ; 14(2): 224-231, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34992286

RESUMEN

Highly charged intrinsically disordered proteins are essential regulators of chromatin structure and transcriptional activity. Here we identify a surprising mechanism of molecular competition that relies on the pronounced dynamical disorder present in these polyelectrolytes and their complexes. The highly positively charged human linker histone H1.0 (H1) binds to nucleosomes with ultrahigh affinity, implying residence times incompatible with efficient biological regulation. However, we show that the disordered regions of H1 retain their large-amplitude dynamics when bound to the nucleosome, which enables the highly negatively charged and disordered histone chaperone prothymosin α to efficiently invade the H1-nucleosome complex and displace H1 via a competitive substitution mechanism, vastly accelerating H1 dissociation. By integrating experiments and simulations, we establish a molecular model that rationalizes the remarkable kinetics of this process structurally and dynamically. Given the abundance of polyelectrolyte sequences in the nuclear proteome, this mechanism is likely to be widespread in cellular regulation.


Asunto(s)
Histonas/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Nucleosomas/metabolismo , Polielectrolitos/metabolismo , Humanos
14.
Essays Biochem ; 65(1): 129-142, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33438724

RESUMEN

Single-molecule manipulation with optical tweezers has uncovered macromolecular behaviour hidden to other experimental techniques. Recent instrumental improvements have made it possible to expand the range of systems accessible to optical tweezers. Beyond focusing on the folding and structural changes of isolated single molecules, optical tweezers studies have evolved into unraveling the basic principles of complex molecular processes such as co-translational folding on the ribosome, kinase activation dynamics, ligand-receptor binding, chaperone-assisted protein folding, and even dynamics of intrinsically disordered proteins (IDPs). In this mini-review, we illustrate the methodological principles of optical tweezers before highlighting recent advances in studying complex protein conformational dynamics - from protein synthesis to physiological function - as well as emerging future issues that are beginning to be addressed with novel approaches.


Asunto(s)
Pinzas Ópticas , Pliegue de Proteína , Chaperonas Moleculares/metabolismo , Conformación Proteica , Ribosomas/metabolismo
15.
Prog Mol Biol Transl Sci ; 183: 295-354, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34656332

RESUMEN

The complex nucleoprotein landscape of the eukaryotic cell nucleus is rich in dynamic proteins that lack a stable three-dimensional structure. Many of these intrinsically disordered proteins operate directly on the first fundamental level of genome compaction: the nucleosome. Here we give an overview of how disordered interactions with and within nucleosomes shape the dynamics, architecture, and epigenetic regulation of the genetic material, controlling cellular transcription patterns. We highlight experimental and computational challenges in the study of protein disorder and illustrate how integrative approaches are increasingly unveiling the fine details of nuclear interaction networks. We finally dissect sequence properties encoded in disordered regions and assess common features of disordered nucleosome-binding proteins. As drivers of many critical biological processes, disordered proteins are integral to a comprehensive molecular view of the dynamic nuclear milieu.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Nucleosomas , Ensamble y Desensamble de Cromatina , Epigénesis Genética , Genoma , Histonas/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo
16.
Curr Opin Struct Biol ; 60: 66-76, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31874413

RESUMEN

Recent evidence shows that oppositely charged intrinsically disordered proteins (IDPs) can form high-affinity complexes that involve neither the formation of secondary or tertiary structure nor site-specific interactions between individual residues. Similar electrostatically dominated interactions have also been identified for positively charged IDPs binding to nucleic acids. These highly disordered polyelectrolyte complexes constitute an extreme case within the spectrum of biomolecular interactions involving disorder. Such interactions are likely to be widespread, since sequence analysis predicts proteins with highly charged disordered regions to be surprisingly numerous. Here, we summarize the insights that have emerged from the highly disordered polyelectrolyte complexes identified so far, and we highlight recent developments and future challenges in (i) establishing models for the underlying highly dynamic structural ensembles, (ii) understanding the novel binding mechanisms associated with them, and (iii) identifying the functional consequences.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Polielectrolitos/química , Polielectrolitos/metabolismo , Animales , Humanos
17.
Nat Commun ; 11(1): 5736, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33184256

RESUMEN

Highly charged intrinsically disordered proteins can form complexes with very high affinity in which both binding partners fully retain their disorder and dynamics, exemplified by the positively charged linker histone H1.0 and its chaperone, the negatively charged prothymosin α. Their interaction exhibits another surprising feature: The association/dissociation kinetics switch from slow two-state-like exchange at low protein concentrations to fast exchange at higher, physiologically relevant concentrations. Here we show that this change in mechanism can be explained by the formation of transient ternary complexes favored at high protein concentrations that accelerate the exchange between bound and unbound populations by orders of magnitude. Molecular simulations show how the extreme disorder in such polyelectrolyte complexes facilitates (i) diffusion-limited binding, (ii) transient ternary complex formation, and (iii) fast exchange of monomers by competitive substitution, which together enable rapid kinetics. Biological polyelectrolytes thus have the potential to keep regulatory networks highly responsive even for interactions with extremely high affinities.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Polielectrolitos/química , Cinética , Espectroscopía de Resonancia Magnética , Chaperonas Moleculares/química , Simulación de Dinámica Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Precursores de Proteínas/química , Coloración y Etiquetado , Timosina/análogos & derivados
18.
Front Mol Neurosci ; 11: 468, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30618617

RESUMEN

The human neuronal calcium sensor-1 (NCS-1) is a multispecific two-domain EF-hand protein expressed predominantly in neurons and is a member of the NCS protein family. Structure-function relationships of NCS-1 have been extensively studied showing that conformational dynamics linked to diverse ion-binding is important to its function. NCS-1 transduces Ca2+ changes in neurons and is linked to a wide range of neuronal functions such as regulation of neurotransmitter release, voltage-gated Ca2+ channels and neuronal outgrowth. Defective NCS-1 can be deleterious to cells and has been linked to serious neuronal disorders like autism. Here, we review recent studies describing at the single molecule level the structural and mechanistic details of the folding and misfolding processes of the non-myristoylated NCS-1. By manipulating one molecule at a time with optical tweezers, the conformational equilibria of the Ca2+-bound, Mg2+-bound and apo states of NCS-1 were investigated revealing a complex folding mechanism underlain by a rugged and multidimensional energy landscape. The molecular rearrangements that NCS-1 undergoes to transit from one conformation to another and the energetics of these reactions are tightly regulated by the binding of divalent ions (Ca2+ and Mg2+) to its EF-hands. At pathologically high Ca2+ concentrations the protein sometimes follows non-productive misfolding pathways leading to kinetically trapped and potentially harmful misfolded conformations. We discuss the significance of these misfolding events as well as the role of inter-domain interactions in shaping the energy landscape and ultimately the biological function of NCS-1. The conformational equilibria of NCS-1 are also compared to those of calmodulin (CaM) and differences and similarities in the behavior of these proteins are rationalized in terms of structural properties.

20.
J Mol Biol ; 426(3): 722-34, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24211721

RESUMEN

The unfolded state of globular proteins is not well described by a simple statistical coil due to residual structural features, such as secondary structure or transiently formed long-range contacts. The principle of minimal frustration predicts that the unfolded ensemble is biased toward productive regions in the conformational space determined by the native structure. Transient long-range contacts, both native-like and non-native-like, have previously been shown to be present in the unfolded state of the four-helix-bundle protein acyl co-enzyme binding protein (ACBP) as seen from both perturbations in nuclear magnetic resonance (NMR) chemical shifts and structural ensembles generated from NMR paramagnetic relaxation data. To study the nature of the contacts in detail, we used paramagnetic NMR relaxation enhancements, in combination with single-point mutations, to obtain distance constraints for the acid-unfolded ensemble of ACBP. We show that, even in the acid-unfolded state, long-range contacts are specific in nature and single-point mutations affect the free-energy landscape of the unfolded protein. Using this approach, we were able to map out concerted, interconnected, and productive long-range contacts. The correlation between the native-state stability and compactness of the denatured state provides further evidence for native-like contact formation in the denatured state. Overall, these results imply that, even in the earliest stages of folding, ACBP dynamics are governed by native-like contacts on a minimally frustrated energy landscape.


Asunto(s)
Inhibidor de la Unión a Diazepam/química , Pliegue de Proteína , Animales , Bovinos , Inhibidor de la Unión a Diazepam/genética , Inhibidor de la Unión a Diazepam/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Mutación Puntual/genética , Conformación Proteica , Desnaturalización Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA