Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Eur J Immunol ; : e2350685, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890809

RESUMEN

Unsaturated fatty acids (UFA) are crucial for T-cell effector functions, as they can affect the growth, differentiation, survival, and function of T cells. Nonetheless, the mechanisms by which UFA affects T-cell behavior are ill-defined. Therefore, we analyzed the processing of oleic acid, a prominent UFA abundantly present in blood, adipocytes, and the fat pads surrounding lymph nodes, in CD4+ T cells. We found that exogenous oleic acid increases proliferation and enhances the calcium flux response upon CD3/CD28 activation. By using a variety of techniques, we found that the incorporation of oleic acid into membrane lipids, rather than regulation of cellular metabolism or TCR expression, is essential for its effects on CD4+ T cells. These results provide novel insights into the mechanism through which exogenous oleic acid enhances CD4+ T-cell function.

2.
J Am Chem Soc ; 144(41): 18938-18947, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36197299

RESUMEN

The fish oil constituent docosahexaenoic acid (DHA, 22:6 n-3) is a signaling lipid with anti-inflammatory properties. The molecular mechanisms underlying the biological effect of DHA are poorly understood. Here, we report the design, synthesis, and application of a complementary pair of bio-orthogonal, photoreactive probes based on the polyunsaturated scaffold DHA and its oxidative metabolite 17-hydroxydocosahexaenoic acid (17-HDHA). In these probes, an alkyne serves as a handle to introduce a fluorescent reporter group or a biotin-affinity tag via copper(I)-catalyzed azide-alkyne cycloaddition. This pair of chemical probes was used to map specific targets of the omega-3 signaling lipids in primary human macrophages. Prostaglandin reductase 1 (PTGR1) was identified as an interaction partner that metabolizes 17-oxo-DHA, an oxidative metabolite of 17-HDHA. 17-oxo-DHA reduced the formation of pro-inflammatory lipids 5-HETE and LTB4 in human macrophages and neutrophils. Our results demonstrate the potential of comparative photoaffinity protein profiling for the discovery of metabolic enzymes of bioactive lipids and highlight the power of chemical proteomics to uncover new biological insights.


Asunto(s)
Ácidos Docosahexaenoicos , Ácidos Grasos Omega-3 , Humanos , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Azidas , Cobre/farmacología , Biotina/farmacología , Leucotrieno B4/farmacología , Ácidos Grasos Omega-3/farmacología , Macrófagos , Aceites de Pescado/farmacología , Antiinflamatorios/farmacología , Alquinos/farmacología , Prostaglandinas , Oxidorreductasas
3.
J Neurosci ; 40(5): 1162-1173, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31889008

RESUMEN

Recovery after stroke is a multicellular process encompassing neurons, resident immune cells, and brain-invading cells. Stroke alters the gut microbiome, which in turn has considerable impact on stroke outcome. However, the mechanisms underlying gut-brain interaction and implications for long-term recovery are largely elusive. Here, we tested the hypothesis that short-chain fatty acids (SCFAs), key bioactive microbial metabolites, are the missing link along the gut-brain axis and might be able to modulate recovery after experimental stroke. SCFA supplementation in the drinking water of male mice significantly improved recovery of affected limb motor function. Using in vivo wide-field calcium imaging, we observed that SCFAs induced altered contralesional cortex connectivity. This was associated with SCFA-dependent changes in spine and synapse densities. RNA sequencing of the forebrain cortex indicated a potential involvement of microglial cells in contributing to the structural and functional remodeling. Further analyses confirmed a substantial impact of SCFAs on microglial activation, which depended on the recruitment of T cells to the infarcted brain. Our findings identified that microbiota-derived SCFAs modulate poststroke recovery via effects on systemic and brain resident immune cells.SIGNIFICANCE STATEMENT Previous studies have shown a bidirectional communication along the gut-brain axis after stroke. Stroke alters the gut microbiota composition, and in turn, microbiota dysbiosis has a substantial impact on stroke outcome by modulating the immune response. However, until now, the mediators derived from the gut microbiome affecting the gut-immune-brain axis and the molecular mechanisms involved in this process were unknown. Here, we demonstrate that short-chain fatty acids, fermentation products of the gut microbiome, are potent and proregenerative modulators of poststroke neuronal plasticity at various structural levels. We identified that this effect was mediated via circulating lymphocytes on microglial activation. These results identify short-chain fatty acids as a missing link along the gut-brain axis and as a potential therapeutic to improve recovery after stroke.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Ácidos Grasos Volátiles/administración & dosificación , Accidente Cerebrovascular/inmunología , Animales , Encéfalo/metabolismo , Femenino , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Masculino , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/inmunología , Recuperación de la Función/efectos de los fármacos , Accidente Cerebrovascular/metabolismo , Transcriptoma/efectos de los fármacos
4.
Gut ; 67(7): 1269-1279, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29101261

RESUMEN

OBJECTIVE: Butyrate exerts metabolic benefits in mice and humans, the underlying mechanisms being still unclear. We aimed to investigate the effect of butyrate on appetite and energy expenditure, and to what extent these two components contribute to the beneficial metabolic effects of butyrate. DESIGN: Acute effects of butyrate on appetite and its method of action were investigated in mice following an intragastric gavage or intravenous injection of butyrate. To study the contribution of satiety to the metabolic benefits of butyrate, mice were fed a high-fat diet with butyrate, and an additional pair-fed group was included. Mechanistic involvement of the gut-brain neural circuit was investigated in vagotomised mice. RESULTS: Acute oral, but not intravenous, butyrate administration decreased food intake, suppressed the activity of orexigenic neurons that express neuropeptide Y in the hypothalamus, and decreased neuronal activity within the nucleus tractus solitarius and dorsal vagal complex in the brainstem. Chronic butyrate supplementation prevented diet-induced obesity, hyperinsulinaemia, hypertriglyceridaemia and hepatic steatosis, largely attributed to a reduction in food intake. Butyrate also modestly promoted fat oxidation and activated brown adipose tissue (BAT), evident from increased utilisation of plasma triglyceride-derived fatty acids. This effect was not due to the reduced food intake, but explained by an increased sympathetic outflow to BAT. Subdiaphragmatic vagotomy abolished the effects of butyrate on food intake as well as the stimulation of metabolic activity in BAT. CONCLUSION: Butyrate acts on the gut-brain neural circuit to improve energy metabolism via reducing energy intake and enhancing fat oxidation by activating BAT.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , Apetito/efectos de los fármacos , Butiratos/farmacología , Ingestión de Energía/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Respuesta de Saciedad/efectos de los fármacos , Administración Oral , Animales , Butiratos/administración & dosificación , Inyecciones Intravenosas , Masculino , Ratones
5.
iScience ; 27(6): 109830, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770137

RESUMEN

The liver X receptor (LXR) is considered a therapeutic target for atherosclerosis treatment, but synthetic LXR agonists generally also cause hepatic steatosis and hypertriglyceridemia. Desmosterol, a final intermediate in cholesterol biosynthesis, has been identified as a selective LXR ligand that suppresses inflammation without inducing lipogenesis. Δ24-Dehydrocholesterol reductase (DHCR24) converts desmosterol into cholesterol, and we previously showed that the DHCR24 inhibitor SH42 increases desmosterol to activate LXR and attenuate experimental peritonitis and metabolic dysfunction-associated steatotic liver disease. Here, we aimed to evaluate the effect of SH42 on atherosclerosis development in APOE∗3-Leiden.CETP mice and low-density lipoproteins (LDL) receptor knockout mice, models for lipid- and inflammation-driven atherosclerosis, respectively. In both models, SH42 increased desmosterol without affecting plasma lipids. While reducing liver lipids in APOE∗3-Leiden.CETP mice, and regulating populations of circulating monocytes in LDL receptor knockout mice, SH42 did not attenuate atherosclerosis in either model.

6.
Neurobiol Pain ; 13: 100112, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36636095

RESUMEN

Administration of glyceryl trinitrate (GTN), a donor of nitric oxide, can induce migraine-like attacks in subjects with migraine. Provocation with GTN typically follows a biphasic pattern; it induces immediate headache in subjects with migraine, as well as in healthy controls, whereafter only subjects with migraine may develop a migraine-like headache several hours later. Interestingly, intravenous infusion with prostaglandin-E2 (PGE2) can also provoke a migraine-like headache, but seems to have a more rapid onset compared to GTN. The aim of the study was to shed light on the mechanistic aspect PGE2 has in migraine attack development. Therefore, PGE2 plasma levels were measured towards the (pre)ictal state of an attack, which we provoked with GTN. Blood samples from women with migraine (n = 37) and age-matched female controls (n = 25) were obtained before and âˆ¼ 140 min and âˆ¼ 320 min after GTN infusion. PGE2 levels were measured using liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. Data was analyzed using a generalized linear mixed-effect model. Immediate headache after GTN infusion occurred in 85 % of migraine participants and in 75 % of controls. A delayed onset migraine-like attack was observed in 82 % of migraine subjects and in none of the controls. PGE2 levels were not different between the interictal and preictal state (P = 0.527) nor between interictal and ictal state (defined as having migraine-like headache) (P = 0.141). Hence, no evidence was found that a rise in PGE2 is an essential step in the initiation of GTN-induced migraine-like attacks.

7.
Neurology ; 101(5): e533-e545, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37290971

RESUMEN

BACKGROUND AND OBJECTIVES: Excessive activation of certain lipid mediator (LM) pathways plays a role in the complex pathogenesis of multiple sclerosis (MS). However, the relationship between bioactive LMs and different aspects of CNS-related pathophysiologic processes remains largely unknown. Therefore, in this study, we assessed the association of bioactive LMs belonging to the ω-3/ω-6 lipid classes with clinical and biochemical (serum neurofilament light [sNfL] and serum glial fibrillary acidic protein [sGFAP]) parameters and MRI-based brain volumes in patients with MS (PwMS) and healthy controls (HCs). METHODS: A targeted high-performance liquid chromatography-tandem mass spectrometry approach was used on plasma samples of PwMS and HCs of the Project Y cohort, a cross-sectional population-based cohort that contains PwMS all born in 1966 in the Netherlands and age-matched HCs. LMs were compared between PwMS and HCs and were correlated with levels of sNfL, sGFAP, disability (Expanded Disability Status Scale [EDSS]), and brain volumes. Finally, significant correlates were included in a backward multivariate regression model to identify which LMs best related to disability. RESULTS: The study sample consisted of 170 patients with relapsing remitting MS (RRMS), 115 patients with progressive MS (PMS), and 125 HCs. LM profiles of patients with PMS significantly differed from those of patients with RRMS and HCs, particularly patients with PMS showed elevated levels of several arachidonic acid (AA) derivatives. In particular, 15-hydroxyeicosatetraenoic acid (HETE) (r = 0.24, p < 0.001) correlated (average r = 0.2, p < 0.05) with clinical and biochemical parameters such as EDSS and sNfL. In addition, higher 15-HETE levels were related to lower total brain (r = -0.24, p = 0.04) and deep gray matter volumes (r = -0.27, p = 0.02) in patients with PMS and higher lesion volume (r = 0.15, p = 0.03) in all PwMS. DISCUSSION: In PwMS of the same birth year, we show that ω-3 and ω-6 LMs are associated with disability, biochemical parameters (sNfL, GFAP), and MRI measures. Furthermore, our findings indicate that, particularly, in patients with PMS, elevated levels of specific products of the AA pathway, such as 15-HETE, associate with neurodegenerative processes. Our findings highlight the potential relevance of ω-6 LMs in the pathogenesis of MS.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Persona de Mediana Edad , Esclerosis Múltiple/patología , Ácido Araquidónico , Estudios Transversales , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Gravedad del Paciente
8.
JCI Insight ; 8(4)2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36810253

RESUMEN

Short-chain fatty acids, including butyrate, have multiple metabolic benefits in individuals who are lean but not in individuals with metabolic syndrome, with the underlying mechanisms still being unclear. We aimed to investigate the role of gut microbiota in the induction of metabolic benefits of dietary butyrate. We performed antibiotic-induced microbiota depletion of the gut and fecal microbiota transplantation (FMT) in APOE*3-Leiden.CETP mice, a well-established translational model for developing human-like metabolic syndrome, and revealed that dietary butyrate reduced appetite and ameliorated high-fat diet-induced (HFD-induced) weight gain dependent on the presence of gut microbiota. FMT from butyrate-treated lean donor mice, but not butyrate-treated obese donor mice, into gut microbiota-depleted recipient mice reduced food intake, attenuated HFD-induced weight gain, and improved insulin resistance. 16S rRNA and metagenomic sequencing on cecal bacterial DNA of recipient mice implied that these effects were accompanied by the selective proliferation of Lachnospiraceae bacterium 28-4 in the gut as induced by butyrate. Collectively, our findings reveal a crucial role of gut microbiota in the beneficial metabolic effects of dietary butyrate as strongly associated with the abundance of Lachnospiraceae bacterium 28-4.


Asunto(s)
Butiratos , Síndrome Metabólico , Humanos , Animales , Ratones , Butiratos/efectos adversos , Obesidad/metabolismo , ARN Ribosómico 16S , Aumento de Peso , Proliferación Celular
9.
J Inflamm Res ; 15: 311-324, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35058705

RESUMEN

PURPOSE: To determine the effects of dietary omega-3 polyunsaturated fatty acids (PUFAs) on recruitment of natural killer (NK) cells and resolution responses in antigen-induced peritonitis in mice. METHODS: Mice were fed fish oil-enriched or control diets, immunized twice and challenged intraperitoneally with methylated bovine serum albumin. Prior to and at different time-points following inflammation induction, expression of surface molecules on peritoneal cells was determined by flow cytometry, concentration of soluble mediators in peritoneal fluid by ELISA or Luminex, and of lipid mediators by LC-MS/MS, and number of apoptotic cells in mesenteric lymph nodes by TUNEL staining. RESULTS: Mice fed the fish oil diet had higher number of CD11b+CD27- NK cells as well as a higher proportion of CD107a+ NK cells in their peritoneum 6 h after inflammation induction than mice fed the control diet. They also had higher numbers of CCR5+ NK cells and higher concentrations of CCL5 and CXCL12. Additionally, a higher fraction of apoptotic neutrophils but lower fraction of CD47+ neutrophils were present in the peritoneum of mice fed the fish oil diet 6 h after inflammation induction and the fish oil fed mice had a shorter resolution interval. They also had lower concentrations of pro-inflammatory mediators but higher concentrations of the anti-inflammatory/pro-resolution mediators TGF-ß, IGF-1, and soluble TNF RII, as well as higher ratios of hydroxyeicosapentaenoic acid (HEPE) to hydroxyeicosatetraenoic acid (HETE) than mice fed the control diet. CONCLUSION: The results demonstrate that dietary fish oil increases the number of mature NK cells at the inflamed site in antigen-induced peritonitis and enhances several key hallmarks of resolution of inflammation, casting light on the potential mechanisms involved.

10.
Sci Rep ; 12(1): 381, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013389

RESUMEN

GPR120 (encoded by FFAR4 gene) is a receptor for long chain fatty acids, activated by ω-3 Polyunsaturated Fatty Acids (PUFAs), and expressed in many cell types. Its role in the context of colorectal cancer (CRC) is still puzzling with many controversial evidences. Here, we explored the involvement of epithelial GPR120 in the CRC development. Both in vitro and in vivo experiments were conducted to mimic the conditional deletion of the receptor from gut epithelium. Intestinal permeability and integrity of mucus layer were assessed by using Evans blue dye and immunofluorescence for MUC-2 protein, respectively. Microbiota composition, presence of lipid mediators and short chain fatty acids were analyzed in the stools of conditional GPR120 and wild type (WT) mice. Incidence and grade of tumors were evaluated in all groups of mice before and after colitis-associated cancer. Finally, GPR120 expression was analyzed in 9 human normal tissues, 9 adenomas, and 17 primary adenocarcinomas. Our work for the first time highlights the role of the receptor in the progression of colorectal cancer. We observed that the loss of epithelial GPR120 in the gut results into increased intestinal permeability, microbiota translocation and dysbiosis, which turns into hyperproliferation of epithelial cells, likely through the activation of ß -catenin signaling. Therefore, the loss of GPR120 represents an early event of CRC, but avoid its progression as invasive cancer. these results demonstrate that the epithelial GPR120 receptor is essential to maintain the mucosal barrier integrity and to prevent CRC developing. Therefore, our data pave the way to GPR120 as an useful marker for the phenotypic characterization of CRC lesions and as new potential target for CRC prevention.


Asunto(s)
Adenocarcinoma/metabolismo , Neoplasias Asociadas a Colitis/metabolismo , Colon/metabolismo , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/microbiología , Adenocarcinoma/patología , Animales , Traslocación Bacteriana , Proliferación Celular , Neoplasias Asociadas a Colitis/genética , Neoplasias Asociadas a Colitis/microbiología , Neoplasias Asociadas a Colitis/patología , Colon/microbiología , Colon/patología , Progresión de la Enfermedad , Disbiosis , Microbioma Gastrointestinal , Humanos , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Ratones Noqueados , Permeabilidad , Receptores Acoplados a Proteínas G/genética , Carga Tumoral
11.
Artículo en Inglés | MEDLINE | ID: mdl-34753002

RESUMEN

The use of acellular fish skin grafts (FSG) for the treatment of burn wounds is becoming more common due to its beneficial wound healing properties. In our previous study we demonstarted that FSG is a scaffold biomaterial that is rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) conjugated to phosphatidylcholines. Here we investigated whether EPA and DHA derived lipid mediators are influenced during the healing of burn wounds treated with FSG. Deep partial and full thickness burn wounds (DPT and FT, respectively) were created on Yorkshire pigs (n = 4). DPT were treated with either FSG or fetal bovine dermis while FT were treated either with FSG or cadaver skin initially and followed by a split thickness skin graft. Punch biopsies were collected on days 7, 14, 21, 28 and 60 and analyzed in respect of changes to approximately 45 derivatives of EPA, DHA, arachidonic acid (AA), and linoleic acid (LA) employing UPLC-MS/MS methodology. Nine EPA and DHA lipid mediators, principally mono-hydroxylated derivatives such as 18-HEPE and 17-HDHA, were significantly higher on day 7 in the DPT when treated with FSG. A similar but non-significant trend was observed for the FT. The results suggest that the use of FSG in burn wound treatment can alter the formation of EPA and DHA mono hydroxylated lipid mediators in comparison to other grafts of mammalian origin. The differences observed during the first seven days after treatment indicates that FSG affects the early stages of wound healing.


Asunto(s)
Quemaduras/terapia , Ácidos Docosahexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Gadiformes , Lipidómica/métodos , Trasplante de Piel/métodos , Animales , Quemaduras/etiología , Quemaduras/metabolismo , Bovinos , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Metabolismo de los Lípidos , Fosfatidilcolinas/metabolismo , Porcinos , Espectrometría de Masas en Tándem , Cicatrización de Heridas
12.
ACS Infect Dis ; 7(4): 906-916, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33764039

RESUMEN

Opisthorchiasis, is a hepatobiliary disease caused by flukes of the trematode family Opisthorchiidae. A chronic form of the disease implies a prolonged coexistence of a host and the parasite. The pathological changes inflicted by the worm to the host's hepatobiliary system are well documented. Yet, the response to the infection also triggers a deep remodeling of the host systemic metabolism reaching a new homeostasis and affecting the organs beyond the worm location. Understanding the metabolic alternation in chronic opisthorchiasis, could help us to pinpoint pathways that underlie infection opening possibilities for the development of more selective treatment strategies. Here, with this report we apply an integrative, multicompartment metabolomics analysis, using multiple biofluids, stool samples and tissue extracts to describe metabolic changes in Opisthorchis felineus infected animals at the chronic stage. We show that the shift in lipid metabolism in the serum, a depletion of the amino acids pool, an alteration of the ketogenic pathways in the jejunum and a suppressed metabolic activity of the spleen are the key features of the metabolic host adaptation at the chronic stage of O. felineus infection. We describe this combination of the metabolic changes as a "metabolically mediated immunosuppressive status of organism" which develops during a chronic infection. This status in combination with other factors (e.g., parasite-derived immunomodulators) might increase risk of infection-related malignancy.


Asunto(s)
Opistorquiasis , Opisthorchis , Animales , Homeostasis , Metabolismo de los Lípidos , Metabolómica
13.
Artículo en Inglés | MEDLINE | ID: mdl-32447052

RESUMEN

Inflammation is a tightly regulated process. During the past decade it has become clear that the resolution of inflammation is an active process and its dysregulation can contribute to chronic inflammation. Several cells and soluble mediators, including lipid mediators, regulate the course of inflammation and its resolution. It is, however, unclear which signals and cells are involved in initiating the resolution process. Macrophages are tissue resident cells and key players in regulating tissue inflammation through secretion of soluble mediators, including lipids. We hypothesize that persistent inflammatory stimuli can initiate resolution pathways in macrophages. In this study, we detected 21 lipids in LPS-stimulated human monocyte-derived macrophages by liquid chromatography coupled to tandem mass spectrometry. Cyclooxygenase-derived Prostaglandins were observed in the first six hours of stimulation. Interestingly, a switch towards 15-lipoxygenase products, such as the pro-resolving lipid precursors 15-HEPE and 17-HDHA was observed after 24 h. The RNA and protein expression of cyclooxygenase and 15-lipoxygenase were in line with this trend. Treatment with 17-HDHA increased IL-10 production of monocyte-derived macrophages and decreased LTB4 production by neutrophils, indicating the anti-inflammatory property of this lipid. These data reveal that monocyte-derived macrophages contribute to the resolution of inflammation in time by the production of pro-resolving lipids after an initial inflammatory stimulus.


Asunto(s)
Metabolismo de los Lípidos , Macrófagos/metabolismo , Células Cultivadas , Humanos , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Neutrófilos/metabolismo , Transducción de Señal , Receptores Toll-Like
14.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(3): 224-233, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30528790

RESUMEN

INTRODUCTION: Disturbances in onset and resolution of inflammation in chronic obstructive pulmonary disease (COPD) are incompletely understood. Dietary polyunsaturated fatty acids (PUFAs) can be converted into lipid mediators here collectively named oxylipins. These include classical eicosanoids, but also pro-resolving mediators. A balanced production of pro-inflammatory and pro-resolving oxylipins is of importance for adequate inflammatory responses and subsequent return to homeostasis. OBJECTIVES: Here we investigated if PUFA metabolism is disturbed in COPD patients. METHODS: Free PUFA and oxylipin levels were measured in induced sputum samples from the Bergen COPD cohort and COPD exacerbation study using liquid chromatography-mass spectrometry. Additionally, effects of whole cigarette smoke on PUFA metabolism in air-liquid interface cultures of primary bronchial epithelial cells were assessed. RESULTS: Significantly lower levels of free alpha-linolenic acid, linoleic acid and eicosapentaenoic acid (EPA) were detected in sputum from stable COPD patients compared to controls. During acute exacerbation (AE), levels of free arachidonic acid and docosapentaenoic acid were higher than in stable COPD patients. Furthermore, levels of omega-3 EPA- and docosahexaenoic acid-derived oxylipins were lower in sputum from stable COPD patients compared to controls. Cyclooxygenase-2-converted mediators were mostly increased during AE. In vitro studies additionally showed that cigarette smoke exposure may also directly contribute to altered epithelial PUFA metabolism, and indirectly by causing airway epithelial remodelling. CONCLUSIONS: Our findings show significant differences in PUFA metabolism in COPD patients compared to controls, further changed during AE. Airway epithelial remodelling may contribute to these changes. These findings provide new insight in impaired inflammatory resolution in COPD.


Asunto(s)
Ácidos Grasos Insaturados/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Esputo/metabolismo , Ácido Araquidónico/metabolismo , Fumar Cigarrillos/efectos adversos , Fumar Cigarrillos/metabolismo , Dieta , Ácido Eicosapentaenoico/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/metabolismo , Ácidos Grasos Insaturados/fisiología , Femenino , Humanos , Inflamación/metabolismo , Masculino , Persona de Mediana Edad , Oxilipinas/metabolismo , Mucosa Respiratoria/metabolismo , Fumadores , Esputo/química , Ácido alfa-Linolénico
15.
Virulence ; 9(1): 1019-1035, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30052120

RESUMEN

Lipid mediators, derived from arachidonic acid metabolism, play an important role in immune regulation. The functions of bioactive eicosanoids range from modulating cytokine signaling and inflammasome formation to anti-inflammatory and pro-resolving activities. Human pathogenic fungi such as Candida albicans, Candida parapsilosis, Cryptococcus neoformans and Aspergillus fumigatus have been shown to produce such lipid mediators, associated with their virulence. To date, investigations into the molecular mechanisms of fungal eicosanoid biosynthesis in different species have revealed that several genes are associated with prostaglandin production. However, these routes remain uncharacterized in C. parapsilosis with early results suggesting it uses pathways distinct from those found in C. albicans. Therefore, we aimed to identify and characterize C. parapsilosis genes involved in eicosanoid biosynthesis. Following arachidonic acid treatment of C. parapsilosis cells, we identified several genes interfering with prostaglandin production. Out of the identified genes, homologues of a multi copper oxidase (FET3), an Acyl-CoA thiolase (POT1) and an Acyl-CoA oxidase (POX1-3) were found to play a significant role in prostaglandin synthesis. Furthermore, all three genes were confirmed to enhance C. parapsilosis pathogenicity, as the corresponding deletion mutants were cleared more efficiently by human macrophages and induced higher levels of pro-inflammatory cytokines. In addition, the mutants were less virulent than the wild-type strain in a mouse model of systemic infection. Taken together, we identified three genes that regulate eicosanoid biosynthesis in C. parapsilosis and impact the fungus' virulence.


Asunto(s)
Candida parapsilosis/enzimología , Candida parapsilosis/patogenicidad , Candidiasis/microbiología , Eicosanoides/biosíntesis , Acil-CoA Oxidasa/genética , Acil-CoA Oxidasa/metabolismo , Animales , Vías Biosintéticas , Candida parapsilosis/genética , Coenzima A Transferasas/genética , Coenzima A Transferasas/metabolismo , Femenino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Virulencia
16.
Methods Mol Biol ; 1730: 247-256, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29363078

RESUMEN

Short-chain fatty acids, the end products of fermentation of dietary fibers by the gut microbiota, have been shown to exert multiple effects on mammalian metabolism. For the analysis of short-chain fatty acids, gas chromatography-mass spectrometry is a very powerful and reliable method. Here, we describe a fast, reliable, and reproducible method for the separation and quantification of short-chain fatty acids in mouse feces, cecum content, and blood samples (i.e., plasma or serum) using gas chromatography-mass spectrometry. The short-chain fatty acids analyzed include acetic acid, propionic acid, butyric acid, valeric acid, hexanoic acid, and heptanoic acid.


Asunto(s)
Ciego/química , Ácidos Grasos Volátiles/análisis , Heces/química , Metabolómica/métodos , Ácido Acético/análisis , Ácido Acético/sangre , Animales , Ácido Butírico/análisis , Ácido Butírico/sangre , Caproatos/análisis , Caproatos/sangre , Ácidos Grasos Volátiles/sangre , Cromatografía de Gases y Espectrometría de Masas , Ácidos Heptanoicos/análisis , Ácidos Heptanoicos/sangre , Ratones , Ácidos Pentanoicos/análisis , Ácidos Pentanoicos/sangre , Propionatos/análisis , Propionatos/sangre , Reproducibilidad de los Resultados
17.
Methods Mol Biol ; 1730: 257-265, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29363079

RESUMEN

Our body contains a wide variety of fatty acids that differ in chain length, the degree of unsaturation, and location of the double bonds. As the various fatty acids play distinct roles in health and disease, methods that can specifically determine the fatty acid profile are needed for fundamental and clinical studies. Here we describe a method for the separation and quantification of fatty acids ranging from 8 to 24 carbon chain lengths in blood samples using gas chromatography-mass spectrometry following derivatization using pentafluorobenzyl bromide. This method quantitatively monitors fatty acid composition in a manner that satisfies the requirements for comprehensiveness, sensitivity, and accuracy.


Asunto(s)
Ácidos Grasos/sangre , Metabolómica/métodos , Fluorobencenos/química , Cromatografía de Gases y Espectrometría de Masas , Humanos , Límite de Detección
18.
Cell Death Differ ; 25(2): 421-431, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29053142

RESUMEN

Critical conditions such as sepsis following infection or traumatic injury disturb the complex state of homeostasis that may lead to uncontrolled inflammation resulting in organ failure, shock and death. They are associated with endogenous mediators that control the onset of acute inflammatory response, but the central problem remains the complete resolution of inflammation. Omega-3 enriched lipid emulsions (Ω-3+ LEs) were used in experimental studies and clinical trials to establish homeostasis, yet with little understanding about their role on the resolution of inflammation and tissue regeneration. Here, we demonstrate that Ω-3 lipid emulsions (LEs) orchestrate inflammation-resolution/regeneration mechanism during sterile peritonitis and murine polymicrobial sepsis. Ω-3+ LEs recessed neutrophil infiltration, reduced pro-inflammatory mediators, reduced the classical monocyte and enhanced the non-classical monocytes/macrophages recruitment and finally increased the efferocytosis in sepsis. The actions of Ω-3+ LE were 5-lipoxygenase (5-LOX) and 12/15-lipoxygenase (12/15-LOX) dependent. Ω-3+ LEs shortened the resolution interval by 56%, stimulated the endogenous biosynthesis of resolution mediators lipoxin A4, protectin DX and maresin 1 and contributed to tissue regeneration. Ω-3+ LEs protected against hypothermia and weight loss and enhanced survival in murine polymicrobial sepsis. We highlighted a role of Ω-3+ LEs in regulating key mechanisms within the resolution terrain during murine sepsis. This might form the basis for a rational design of sepsis specific clinical nutrition.


Asunto(s)
Dieta , Ácidos Grasos Omega-3/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Animales , Ácidos Grasos Omega-3/administración & dosificación , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
19.
Sci Rep ; 8(1): 16515, 2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30409998

RESUMEN

Gut microbiota have been implicated in the development of atherosclerosis and cardiovascular disease. Since the prebiotic inulin is thought to beneficially affect gut microbiota, we aimed to determine the effect of inulin supplementation on atherosclerosis development in APOE*3-Leiden.CETP (E3L.CETP) mice. Female E3L.CETP mice were fed a western-type diet containing 0.1% or 0.5% cholesterol with or without 10% inulin. The effects of inulin were determined on: microbiota composition, cecal short-chain fatty acid (SCFA) levels, plasma lipid levels, atherosclerosis development, hepatic morphology and hepatic inflammation. Inulin with 0.5% dietary cholesterol increased specific bacterial genera and elevated levels of cecal SCFAs, but did not affect plasma cholesterol levels or atherosclerosis development. Surprisingly, inulin resulted in mild hepatic inflammation as shown by increased expression of inflammation markers. However, these effects were not accompanied by increased hepatic macrophage number. Analogously, inulin induced mild steatosis and increased hepatocyte size, but did not affect hepatic triglyceride content. Inulin with 0.1% dietary cholesterol did not affect hepatic morphology, nor hepatic expression of inflammation markers. Overall, inulin did not reduce hypercholesterolemia or atherosclerosis development in E3L.CETP mice despite showing clear prebiotic activity, but resulted in manifestations of hepatic inflammation when combined with a high percentage of dietary cholesterol.


Asunto(s)
Apolipoproteína E3/genética , Aterosclerosis/inmunología , Bacterias/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Hipercolesterolemia/inmunología , Inulina/administración & dosificación , Prebióticos/administración & dosificación , Animales , Apolipoproteína E3/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , ADN Ribosómico/genética , Dieta Occidental/efectos adversos , Modelos Animales de Enfermedad , Ácidos Grasos/química , Femenino , Hipercolesterolemia/inducido químicamente , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Inulina/farmacología , Lípidos/sangre , Ratones , Ratones Transgénicos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
20.
Mol Nutr Food Res ; 62(10): e1700942, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29665623

RESUMEN

SCOPE: Mannan oligosaccharides (MOS) have proven effective at improving growth performance, while also reducing hyperlipidemia and inflammation. As atherosclerosis is accelerated both by hyperlipidemia and inflammation, we aim to determine the effect of dietary MOS on atherosclerosis development in hyperlipidemic ApoE*3-Leiden.CETP (E3L.CETP) mice, a well-established model for human-like lipoprotein metabolism. METHODS AND RESULTS: Female E3L.CETP mice were fed a high-cholesterol diet, with or without 1% MOS for 14 weeks. MOS substantially decreased atherosclerotic lesions up to 54%, as assessed in the valve area of the aortic root. In blood, IL-1RA, monocyte subtypes, lipids, and bile acids (BAs) were not affected by MOS. Gut microbiota composition was determined using 16S rRNA gene sequencing and MOS increased the abundance of cecal Bacteroides ovatus. MOS did not affect fecal excretion of cholesterol, but increased fecal BAs as well as butyrate in cecum as determined by gas chromatography mass spectrometry. CONCLUSION: MOS decreased the onset of atherosclerosis development via lowering of plasma cholesterol levels. These effects were accompanied by increased cecal butyrate and fecal excretion of BAs, presumably mediated via interactions of MOS with the gut microbiota.


Asunto(s)
Aterosclerosis/dietoterapia , Ácidos y Sales Biliares/metabolismo , Colesterol/sangre , Microbioma Gastrointestinal/efectos de los fármacos , Mananos/farmacología , Animales , Aterosclerosis/patología , Bacteroides/aislamiento & purificación , Biomarcadores/metabolismo , Butiratos/metabolismo , Ciego/efectos de los fármacos , Ciego/microbiología , Colesterol/metabolismo , Suplementos Dietéticos , Heces , Femenino , Microbioma Gastrointestinal/fisiología , Inflamación/dietoterapia , Inflamación/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones Mutantes , Triglicéridos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA