RESUMEN
The genomes of virtually all organisms contain repetitive sequences that are generated by the activity of transposable elements (transposons). Transposons are mobile genetic elements that can move from one genomic location to another; in this process, they amplify and increase their presence in genomes, sometimes to very high copy numbers. In this Review we discuss new evidence and ideas that the activity of retrotransposons, a major subgroup of transposons overall, influences and even promotes the process of ageing and age-related diseases in complex metazoan organisms, including humans. Retrotransposons have been coevolving with their host genomes since the dawn of life. This relationship has been largely competitive, and transposons have earned epithets such as 'junk DNA' and 'molecular parasites'. Much of our knowledge of the evolution of retrotransposons reflects their activity in the germline and is evident from genome sequence data. Recent research has provided a wealth of information on the activity of retrotransposons in somatic tissues during an individual lifespan, the molecular mechanisms that underlie this activity, and the manner in which these processes intersect with our own physiology, health and well-being.
Asunto(s)
Envejecimiento/genética , Envejecimiento/patología , Enfermedad/genética , Retroelementos/genética , Animales , Daño del ADN , Silenciador del Gen , Genoma Humano/genética , Genómica , Humanos , Inmunidad InnataRESUMEN
Retrotransposable elements are deleterious at many levels, and the failure of host surveillance systems for these elements can thus have negative consequences. However, the contribution of retrotransposon activity to ageing and age-associated diseases is not known. Here we show that during cellular senescence, L1 (also known as LINE-1) retrotransposable elements become transcriptionally derepressed and activate a type-I interferon (IFN-I) response. The IFN-I response is a phenotype of late senescence and contributes to the maintenance of the senescence-associated secretory phenotype. The IFN-I response is triggered by cytoplasmic L1 cDNA, and is antagonized by inhibitors of the L1 reverse transcriptase. Treatment of aged mice with the nucleoside reverse transcriptase inhibitor lamivudine downregulated IFN-I activation and age-associated inflammation (inflammaging) in several tissues. We propose that the activation of retrotransposons is an important component of sterile inflammation that is a hallmark of ageing, and that L1 reverse transcriptase is a relevant target for the treatment of age-associated disorders.
Asunto(s)
Senescencia Celular/genética , Inflamación/genética , Interferón Tipo I/metabolismo , Elementos de Nucleótido Esparcido Largo/genética , Envejecimiento/genética , Envejecimiento/patología , Animales , Regulación hacia Abajo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Inflamación/patología , Lamivudine/farmacología , Masculino , Ratones , Fenotipo , ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Inhibidores de la Transcriptasa Inversa/farmacologíaRESUMEN
An Amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Sirt6 is a multifunctional enzyme that regulates diverse cellular processes such as metabolism, DNA repair, and aging. Overexpressing Sirt6 extends lifespan in mice, but the underlying cellular mechanisms are unclear. Drosophila melanogaster are an excellent model to study genetic regulation of lifespan; however, despite extensive study in mammals, very little is known about Sirt6 function in flies. Here, we characterized the Drosophila ortholog of Sirt6, dSirt6, and examined its role in regulating longevity; dSirt6 is a nuclear and chromatin-associated protein with NAD+-dependent histone deacetylase activity. dSirt6 overexpression (OE) in flies produces robust lifespan extension in both sexes, while reducing dSirt6 levels shortens lifespan. dSirt6 OE flies have normal food consumption and fertility but increased resistance to oxidative stress and reduced protein synthesis rates. Transcriptomic analyses reveal that dSirt6 OE reduces expression of genes involved in ribosome biogenesis, including many dMyc target genes. dSirt6 OE partially rescues many effects of dMyc OE, including increased nuclear size, up-regulation of ribosome biogenesis genes, and lifespan shortening. Last, dMyc haploinsufficiency does not convey additional lifespan extension to dSirt6 OE flies, suggesting dSirt6 OE is upstream of dMyc in regulating lifespan. Our results provide insight into the mechanisms by which Sirt6 OE leads to longer lifespan.
Asunto(s)
Longevidad/genética , Sirtuinas/metabolismo , Envejecimiento/fisiología , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Haploinsuficiencia/genética , Histona Desacetilasas/economía , Histona Desacetilasas/metabolismo , Masculino , Sirtuinas/genéticaRESUMEN
Citrate is a critical metabolic substrate and key regulator of energy metabolism in mammalian cells. It has been known for decades that the skeleton contains most (>85%) of the body's citrate, but the question of why and how this metabolite should be partitioned in bone has received singularly little attention. Here, we show that osteoblasts use a specialized metabolic pathway to regulate uptake, endogenous production, and the deposition of citrate into bone. Osteoblasts express high levels of the membranous Na+-dependent citrate transporter solute carrier family 13 member 5 (Slc13a5) gene. Inhibition or genetic disruption of Slc13a5 reduced osteogenic citrate uptake and disrupted mineral nodule formation. Bones from mice lacking Slc13a5 globally, or selectively in osteoblasts, showed equivalent reductions in cortical thickness, with similarly compromised mechanical strength. Surprisingly, citrate content in mineral from Slc13a5-/- osteoblasts was increased fourfold relative to controls, suggesting the engagement of compensatory mechanisms to augment endogenous citrate production. Indeed, through the coordinated functioning of the apical membrane citrate transporter SLC13A5 and a mitochondrial zinc transporter protein (ZIP1; encoded by Slc39a1), a mediator of citrate efflux from the tricarboxylic acid cycle, SLC13A5 mediates citrate entry from blood and its activity exerts homeostatic control of cytoplasmic citrate. Intriguingly, Slc13a5-deficient mice also exhibited defective tooth enamel and dentin formation, a clinical feature, which we show is recapitulated in primary teeth from children with SLC13A5 mutations. Together, our results reveal the components of an osteoblast metabolic pathway, which affects bone strength by regulating citrate deposition into mineral hydroxyapatite.
Asunto(s)
Ácido Cítrico , Simportadores , Animales , Ratones , Ácido Cítrico/metabolismo , Simportadores/metabolismo , Durapatita/metabolismo , Citratos , Ciclo del Ácido Cítrico , Osteoblastos/metabolismo , Mamíferos/metabolismo , Transportadores de Ácidos Dicarboxílicos/metabolismoRESUMEN
Functional data indicate that specific histone modification enzymes can be key to longevity in Caenorhabditis elegans, but the molecular basis of how chromatin structure modulates longevity is not well understood. In this study, we profiled the genome-wide pattern of trimethylation of Lys36 on histone 3 (H3K36me3) in the somatic cells of young and old Caenorhabditis elegans. We revealed a new role of H3K36me3 in maintaining gene expression stability through aging with important consequences on longevity. We found that genes with dramatic expression change during aging are marked with low or even undetectable levels of H3K36me3 in their gene bodies irrespective of their corresponding mRNA abundance. Interestingly, 3' untranslated region (UTR) length strongly correlates with H3K36me3 levels and age-dependent mRNA expression stability. A similar negative correlation between H3K36me3 marking and mRNA expression change during aging was also observed in Drosophila melanogaster, suggesting a conserved mechanism for H3K36me3 in suppressing age-dependent mRNA expression change. Importantly, inactivation of the methyltransferase met-1 resulted in a decrease in global H3K36me3 marks, an increase in mRNA expression change with age, and a shortened life span, suggesting a causative role of the H3K36me3 marking in modulating age-dependent gene expression stability and longevity.
Asunto(s)
Envejecimiento/genética , Caenorhabditis elegans/fisiología , Regulación de la Expresión Génica/genética , Histonas/metabolismo , Longevidad/genética , Animales , Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Histonas/genética , Lisina/genética , Lisina/metabolismo , MetilaciónRESUMEN
Sirtuins are an evolutionarily conserved family of NAD+-dependent deacylases that control metabolism, stress response, genomic stability, and longevity. Here, we show the sole mitochondrial sirtuin in Drosophila melanogaster, Sirt4, regulates energy homeostasis and longevity. Sirt4 knockout flies have a short lifespan, with increased sensitivity to starvation and decreased fertility and activity. In contrast, flies overexpressing Sirt4 either ubiquitously or specifically in the fat body are long-lived. Despite rapid starvation, Sirt4 knockout flies paradoxically maintain elevated levels of energy reserves, including lipids, glycogen, and trehalose, while fasting, suggesting an inability to properly catabolize stored energy. Metabolomic analysis indicates several specific pathways are affected in Sirt4 knockout flies, including glycolysis, branched-chain amino acid metabolism, and impaired catabolism of fatty acids with chain length C18 or greater. Together, these phenotypes point to a role for Sirt4 in mediating the organismal response to fasting, and ensuring metabolic homeostasis and longevity.
Asunto(s)
Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Longevidad , Proteínas Mitocondriales/metabolismo , Sirtuinas/metabolismo , Animales , Animales Modificados Genéticamente/genética , Drosophila melanogaster/genética , Ayuno/fisiología , Femenino , Fertilidad/fisiología , Glucólisis , Homeostasis , Masculino , Metabolómica , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Sirtuinas/genéticaRESUMEN
Transposable elements (TEs) are mobile genetic elements, highly enriched in heterochromatin, that constitute a large percentage of the DNA content of eukaryotic genomes. Aging in Drosophila melanogaster is characterized by loss of repressive heterochromatin structure and loss of silencing of reporter genes in constitutive heterochromatin regions. Using next-generation sequencing, we found that transcripts of many genes native to heterochromatic regions and TEs increased with age in fly heads and fat bodies. A dietary restriction regimen, known to extend life span, repressed the age-related increased expression of genes located in heterochromatin, as well as TEs. We also observed a corresponding age-associated increase in TE transposition in fly fat body cells that was delayed by dietary restriction. Furthermore, we found that manipulating genes known to affect heterochromatin structure, including overexpression of Sir2, Su(var)3-9, and Dicer-2, as well as decreased expression of Adar, mitigated age-related increases in expression of TEs. Increasing expression of either Su(var)3-9 or Dicer-2 also led to an increase in life span. Mutation of Dicer-2 led to an increase in DNA double-strand breaks. Treatment with the reverse transcriptase inhibitor 3TC resulted in decreased TE transposition as well as increased life span in TE-sensitized Dicer-2 mutants. Together, these data support the retrotransposon theory of aging, which hypothesizes that epigenetically silenced TEs become deleteriously activated as cellular defense and surveillance mechanisms break down with age. Furthermore, interventions that maintain repressive heterochromatin and preserve TE silencing may prove key to preventing damage caused by TE activation and extending healthy life span.
Asunto(s)
Cromatina/metabolismo , Elementos Transponibles de ADN/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Longevidad/genética , Animales , Restricción Calórica , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Genotipo , Heterocromatina/metabolismo , Lamivudine/farmacología , ARN Helicasas/genética , ARN Helicasas/metabolismo , Retroelementos/genética , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Regulación hacia Arriba/genéticaRESUMEN
Reduced expression of the Indy ("I am Not Dead, Yet") gene in lower organisms promotes longevity in a manner akin to caloric restriction. Deletion of the mammalian homolog of Indy (mIndy, Slc13a5) encoding for a plasma membrane-associated citrate transporter expressed highly in the liver, protects mice from high-fat diet-induced and aging-induced obesity and hepatic fat accumulation through a mechanism resembling caloric restriction. We studied a possible role of mIndy in human hepatic fat metabolism. In obese, insulin-resistant patients with nonalcoholic fatty liver disease, hepatic mIndy expression was increased and mIndy expression was also independently associated with hepatic steatosis. In nonhuman primates, a 2-year high-fat, high-sucrose diet increased hepatic mIndy expression. Liver microarray analysis showed that high mIndy expression was associated with pathways involved in hepatic lipid metabolism and immunological processes. Interleukin-6 (IL-6) was identified as a regulator of mIndy by binding to its cognate receptor. Studies in human primary hepatocytes confirmed that IL-6 markedly induced mIndy transcription through the IL-6 receptor and activation of the transcription factor signal transducer and activator of transcription 3, and a putative start site of the human mIndy promoter was determined. Activation of the IL-6-signal transducer and activator of transcription 3 pathway stimulated mIndy expression, enhanced cytoplasmic citrate influx, and augmented hepatic lipogenesis in vivo. In contrast, deletion of mIndy completely prevented the stimulating effect of IL-6 on citrate uptake and reduced hepatic lipogenesis. These data show that mIndy is increased in liver of obese humans and nonhuman primates with NALFD. Moreover, our data identify mIndy as a target gene of IL-6 and determine novel functions of IL-6 through mINDY. CONCLUSION: Targeting human mINDY may have therapeutic potential in obese patients with nonalcoholic fatty liver disease. German Clinical Trials Register: DRKS00005450. (Hepatology 2017;66:616-630).
Asunto(s)
Enzimas Desubicuitinizantes/genética , Hígado Graso/metabolismo , Regulación de la Expresión Génica , Interleucina-6/metabolismo , Metabolismo de los Lípidos/genética , Longevidad/genética , Animales , Biopsia con Aguja , Células Cultivadas , Hígado Graso/patología , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Inmunohistoquímica , Interleucina-6/farmacología , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Mutación , ARN Mensajero/genética , MuestreoRESUMEN
The Midwest Aging Consortium (MAC) has emerged as a critical collaborative initiative aimed at advancing our understanding of aging and developing strategies to combat the rising prevalence of age-related diseases. Founded in 2019, MAC brings together researchers from various disciplines and institutions across the Midwestern United States to foster interdisciplinary geroscience research. This report summarizes the highlights of the Fourth Annual Symposium of MAC, which was held at Iowa State University in May 2023. The symposium featured presentations on a wide array of topics, including studies on slow-aging animals, cellular senescence and senotherapeutics, the role of the immune system in aging, metabolic changes in aging, neuronal health in aging, and biomarkers for measuring the aging process. Speakers shared findings from studies involving a variety of animals, ranging from commonly used species such as mice, rats, worms, yeast, and fruit flies, to less-common ones like naked mole-rats, painted turtles, and rotifers. MAC continues to emphasize the importance of supporting emerging researchers and fostering a collaborative environment, positioning itself as a leader in aging research. This symposium not only showcased the current state of aging biology research but also highlighted the consortium's role in training the next generation of scientists dedicated to improving the healthspan and well-being of the aging population.
Asunto(s)
Envejecimiento , Envejecimiento/fisiología , Animales , Humanos , Medio Oeste de Estados Unidos , Congresos como Asunto , GerocienciaRESUMEN
Calorie restriction (CR) improves health and extends life span in a variety of species. Despite many downstream molecules and physiological systems having been identified as being regulated by CR, the mechanism by which CR extends life span remains unclear. The Drosophila gene Indy (for I'm not dead yet), involved in the transport and storage of Krebs cycle intermediates in tissues important in fly metabolism, was proposed to regulate life span via an effect on metabolism that could overlap with CR. In this study, we report that CR down regulates Indy mRNA expression, and that CR and the level of Indy expression interact to affect longevity. Optimal life span extension is seen when Indy expression is decreased between 25 and 75% of normal. Indy long-lived flies show several phenotypes that are shared by long-lived CR flies, including decreased insulin-like signaling, lipid storage, weight gain, and resistance to starvation as well as an increase in spontaneous physical activity. We conclude that Indy and CR interact to affect longevity and that a decrease in Indy may induce a CR-like status that confers life span extension.
Asunto(s)
Envejecimiento/genética , Restricción Calórica , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Simportadores/genética , Simportadores/metabolismo , Animales , Femenino , Regulación de la Expresión Génica , Esperanza de Vida , Metabolismo de los Lípidos , MasculinoRESUMEN
Decreased Indy activity extends lifespan in D. melanogaster without significant reduction in fecundity, metabolic rate, or locomotion. To understand the underlying mechanisms leading to lifespan extension in this mutant strain, we compared the genome-wide gene expression changes in the head and thorax of adult Indy mutant with control flies over the course of their lifespan. A signature enrichment analysis of metabolic and signaling pathways revealed that expression levels of genes in the oxidative phosphorylation pathway are significantly lower in Indy starting at day 20. We confirmed experimentally that complexes I and III of the electron transport chain have lower enzyme activity in Indy long-lived flies by Day 20 and predicted that reactive oxygen species (ROS) production in mitochondria could be reduced. Consistently, we found that both ROS production and protein damage are reduced in Indy with respect to control. However, we did not detect significant differences in total ATP, a phenotype that could be explained by our finding of a higher mitochondrial density in Indy mutants. Thus, one potential mechanism by which Indy mutants extend life span could be through an alteration in mitochondrial physiology leading to an increased efficiency in the ATP/ROS ratio.
Asunto(s)
Transportadores de Ácidos Dicarboxílicos/metabolismo , Proteínas de Drosophila/metabolismo , Especies Reactivas de Oxígeno , Simportadores/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Transportadores de Ácidos Dicarboxílicos/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster , Transporte de Electrón , Genoma , Masculino , Mitocondrias/metabolismo , Modelos Biológicos , Mutación , Estrés Oxidativo , Oxígeno/química , Fenotipo , Fosforilación , Simportadores/fisiologíaRESUMEN
Reduced expression of the plasma membrane citrate transporter INDY (acronym I'm Not Dead, Yet) extends life span in lower organisms. Deletion of the mammalian Indy (mIndy) gene in rodents improves metabolism via mechanisms akin to caloric restriction, known to lower blood pressure (BP) by sympathoadrenal inhibition. We hypothesized that mIndy deletion attenuates sympathoadrenal support of BP. Continuous arterial BP and heart rate (HR) were reduced in mINDY-KO mice. Concomitantly, urinary catecholamine content was lower, and the decreases in BP and HR by mIndy deletion were attenuated after autonomic ganglionic blockade. Catecholamine biosynthesis pathways were reduced in mINDY-KO adrenals using unbiased microarray analysis. Citrate, the main mINDY substrate, increased catecholamine content in pheochromocytoma cells, while pharmacological inhibition of citrate uptake blunted the effect. Our data suggest that deletion of mIndy reduces sympathoadrenal support of BP and HR by attenuating catecholamine biosynthesis. Deletion of mIndy recapitulates beneficial cardiovascular and metabolic responses to caloric restriction, making it an attractive therapeutic target.
Asunto(s)
Presión Sanguínea/genética , Presión Sanguínea/fisiología , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/fisiología , Sistema Simpatoadrenal/fisiología , Simportadores/genética , Simportadores/fisiología , Glándulas Suprarrenales/anatomía & histología , Glándulas Suprarrenales/fisiología , Animales , Restricción Calórica , Catecolaminas/biosíntesis , Línea Celular , Células Cromafines/fisiología , Transportadores de Ácidos Dicarboxílicos/deficiencia , Expresión Génica , Frecuencia Cardíaca/genética , Frecuencia Cardíaca/fisiología , Longevidad/genética , Longevidad/fisiología , Malatos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Cardiovasculares , Actividad Motora/genética , Actividad Motora/fisiología , Piridinas/farmacología , Simportadores/deficienciaRESUMEN
The oxidative stress hypothesis of aging predicts that a reduction in the generation of mitochondrial reactive oxygen species (ROS) will decrease oxidative damage and extend life span. Increasing mitochondrial proton leak-dependent state 4 respiration by increasing mitochondrial uncoupling is an intervention postulated to decrease mitochondrial ROS production. When human UCP2 (hUCP2) is targeted to the mitochondria of adult fly neurons, we find an increase in state 4 respiration, a decrease in ROS production, a decrease in oxidative damage, heightened resistance to the free radical generator paraquat, and an extension in life span without compromising fertility or physical activity. Our results demonstrate that neuronal-specific expression of hUCP2 in adult flies decreases cellular oxidative damage and is sufficient to extend life span.
Asunto(s)
Proteínas de Transporte de Membrana/biosíntesis , Proteínas Mitocondriales/biosíntesis , Sistema Nervioso/metabolismo , Neuronas/metabolismo , Animales , Animales Modificados Genéticamente , Western Blotting , ADN Complementario/metabolismo , Drosophila melanogaster , Femenino , Humanos , Peróxido de Hidrógeno/química , Canales Iónicos , Longevidad , Masculino , Mitocondrias/metabolismo , Estrés Oxidativo , Consumo de Oxígeno , Especies Reactivas de Oxígeno , Factores Sexuales , Factores de Tiempo , Proteína Desacopladora 2RESUMEN
Caloric restriction extends lifespan in numerous species. In the budding yeast Saccharomyces cerevisiae this effect requires Sir2 (ref. 1), a member of the sirtuin family of NAD+-dependent deacetylases. Sirtuin activating compounds (STACs) can promote the survival of human cells and extend the replicative lifespan of yeast. Here we show that resveratrol and other STACs activate sirtuins from Caenorhabditis elegans and Drosophila melanogaster, and extend the lifespan of these animals without reducing fecundity. Lifespan extension is dependent on functional Sir2, and is not observed when nutrients are restricted. Together these data indicate that STACs slow metazoan ageing by mechanisms that may be related to caloric restriction.
Asunto(s)
Envejecimiento/fisiología , Caenorhabditis elegans/fisiología , Restricción Calórica , Drosophila melanogaster/fisiología , Longevidad/fisiología , Sirtuinas/agonistas , Envejecimiento/efectos de los fármacos , Alelos , Alimentación Animal , Animales , Caenorhabditis elegans/efectos de los fármacos , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/fisiología , Femenino , Fertilidad/efectos de los fármacos , Fertilidad/fisiología , Flavonoides/farmacología , Flavonoles , Genotipo , Longevidad/efectos de los fármacos , Masculino , Mutación/genética , Fenoles/farmacología , Polifenoles , Resveratrol , Sirtuinas/metabolismo , Estilbenos/farmacología , Tasa de Supervivencia , Factores de TiempoRESUMEN
Mice deficient for SIRT6 exhibit a severely shortened lifespan, growth retardation, and highly elevated LINE1 (L1) activity. Here we report that SIRT6-deficient cells and tissues accumulate abundant cytoplasmic L1 cDNA, which triggers strong type I interferon response via activation of cGAS. Remarkably, nucleoside reverse-transcriptase inhibitors (NRTIs), which inhibit L1 retrotransposition, significantly improved health and lifespan of SIRT6 knockout mice and completely rescued type I interferon response. In tissue culture, inhibition of L1 with siRNA or NRTIs abrogated type I interferon response, in addition to a significant reduction of DNA damage markers. These results indicate that L1 activation contributes to the pathologies of SIRT6 knockout mice. Similarly, L1 transcription, cytoplasmic cDNA copy number, and type I interferons were elevated in the wild-type aged mice. As sterile inflammation is a hallmark of aging, we propose that modulating L1 activity may be an important strategy for attenuating age-related pathologies.
Asunto(s)
Inflamación/metabolismo , Proteínas de Unión al ARN/metabolismo , Sirtuinas/metabolismo , Factores de Edad , Animales , Didesoxinucleótidos/administración & dosificación , Didesoxinucleótidos/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos , Ratones Noqueados , Proteínas de Unión al ARN/antagonistas & inhibidores , Sirtuinas/deficiencia , Estavudina/administración & dosificación , Estavudina/farmacología , Nucleótidos de Timina/administración & dosificación , Nucleótidos de Timina/farmacología , Zidovudina/administración & dosificación , Zidovudina/análogos & derivados , Zidovudina/farmacologíaRESUMEN
Hyperactivation of p53 leads to a reduction in tumor formation and an unexpected shortening of life span in two different model systems . The decreased life span occurs with signs of accelerated aging, such as osteoporosis, reduction in body weight, atrophy of organs, decreased stress resistance, and depletion of hematopoietic stem cells. These observations suggest a role for p53 in the determination of life span and the speculation that decreasing p53 activity may result in positive effects on some aging phenotypes . In this report, we show that expression of dominant-negative versions of Drosophila melanogaster p53 in adult neurons extends life span and increases genotoxic stress resistance in the fly. Consistent with this, a naturally occurring allele with decreased p53 activity has been associated with extended survival in humans . Expression of the dominant-negative Drosophila melanogaster p53 constructs does not further increase the extended life span of flies that are calorie restricted, suggesting that a decrease in p53 activity may mediate a component of the calorie-restriction life span-extending pathway in flies.
Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Longevidad/fisiología , Neuronas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Drosophila melanogaster/metabolismo , Metabolismo Energético/fisiología , Fertilidad/fisiología , Longevidad/genética , Estrés Oxidativo/fisiologíaRESUMEN
The regulation of metabolic processes by the Indy (I'm Not Dead Yet) (SLC13A5/NaCT) gene was revealed through studies in Drosophila melanogaster and Caenorhabditis elegans. Reducing the expression of Indy in these species extended their life span by a mechanism resembling caloric restriction, without reducing food intake. In D. melanogaster, mutating the Indy gene reduced body fat content, insulin-like proteins and reactive oxygen species production. Subsequent studies indicated that Indy encodes a citrate transporter located on the cell plasma membrane. The transporter is highly expressed in the mammalian liver. We generated a mammalian knock out model deleting the mammalian homolog mIndy (SLC13A5). The knock out animals were protected from HFD induced obesity, fatty liver and insulin resistance. Moreover, we have shown that inducible and liver selective knock down of mIndy protects against the development of fatty liver and insulin resistance and that obese humans with type 2 diabetes and non-alcoholic fatty liver disease have increased levels of mIndy. Therefore, the transporter mINDY (NaCT) has been proposed to be an 'ideal target for the treatment of metabolic disease'. A small molecule inhibitor of the mINDY transporter has been generated, normalizing glucose levels and reducing fatty liver in a model of diet induced obese mice. Taken together, studies from lower organisms, mammals and humans suggest that mINDY (NaCT) is an attractive target for the treatment of metabolic disease.
Asunto(s)
Transportadores de Ácidos Dicarboxílicos/metabolismo , Simportadores/metabolismo , Animales , Ácido Cítrico/metabolismo , Transportadores de Ácidos Dicarboxílicos/química , Transportadores de Ácidos Dicarboxílicos/genética , Humanos , Longevidad/genética , Enfermedades Metabólicas/metabolismo , Neuronas/metabolismo , Simportadores/química , Simportadores/genéticaRESUMEN
A novel uncoupling protein, UCP5, has recently been characterized as a functional mitochondrial uncoupler in Drosophila. Here we demonstrate that UCP5 knockout (UCP5KO) flies are highly sensitive to starvation stress, a phenotype that can be reversed by ectopic neuronal expression of UCP5. UCP5KO flies live longer than controls on low-calorie diets, have a decreased level of fertility, and gain less weight than controls on high-calorie diets. However, isolated mitochondria from UCP5KO flies display the same respiration patterns as controls. Furthermore, total ATP levels in both UCP5KO and control flies are comparable. UCP5KO flies have a lower body composition of sugars, and during starvation stress their triglyceride reserves are depleted more rapidly than controls. Taken together, these data indicate that UCP5 is important to maintain metabolic homeostasis in the fly. We hypothesize that UCP5 influences hormonal control of metabolism.