Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 590(7844): 151-156, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33442055

RESUMEN

Up to 20% of people worldwide develop gastrointestinal symptoms following a meal1, leading to decreased quality of life, substantial morbidity and high medical costs. Although the interest of both the scientific and lay communities in this issue has increased markedly in recent years, with the worldwide introduction of gluten-free and other diets, the underlying mechanisms of food-induced abdominal complaints remain largely unknown. Here we show that a bacterial infection and bacterial toxins can trigger an immune response that leads to the production of dietary-antigen-specific IgE antibodies in mice, which are limited to the intestine. Following subsequent oral ingestion of the respective dietary antigen, an IgE- and mast-cell-dependent mechanism induced increased visceral pain. This aberrant pain signalling resulted from histamine receptor H1-mediated sensitization of visceral afferents. Moreover, injection of food antigens (gluten, wheat, soy and milk) into the rectosigmoid mucosa of patients with irritable bowel syndrome induced local oedema and mast cell activation. Our results identify and characterize a peripheral mechanism that underlies food-induced abdominal pain, thereby creating new possibilities for the treatment of irritable bowel syndrome and related abdominal pain disorders.


Asunto(s)
Dolor Abdominal/inmunología , Dolor Abdominal/patología , Alérgenos/inmunología , Hipersensibilidad a los Alimentos/inmunología , Alimentos/efectos adversos , Intestinos/inmunología , Síndrome del Colon Irritable/inmunología , Dolor Abdominal/etiología , Dolor Abdominal/microbiología , Adulto , Animales , Citrobacter rodentium/inmunología , Diarrea/inmunología , Diarrea/microbiología , Diarrea/patología , Infecciones por Enterobacteriaceae/complicaciones , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/microbiología , Femenino , Hipersensibilidad a los Alimentos/complicaciones , Hipersensibilidad a los Alimentos/microbiología , Hipersensibilidad a los Alimentos/patología , Glútenes/inmunología , Humanos , Inmunoglobulina E/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Intestinos/microbiología , Intestinos/patología , Síndrome del Colon Irritable/etiología , Síndrome del Colon Irritable/microbiología , Síndrome del Colon Irritable/patología , Masculino , Mastocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Leche/inmunología , Ovalbúmina/inmunología , Calidad de Vida , Receptores Histamínicos H1/metabolismo , Proteínas de Soja/inmunología , Triticum/inmunología
2.
FASEB J ; 37(6): e22939, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37130013

RESUMEN

Traumatic spinal cord injury (SCI) most often leads to permanent paralysis due to the inability of axons to regenerate in the adult mammalian central nervous system (CNS). In the past, we have shown that mast cells (MCs) improve the functional outcome after SCI by suppressing scar tissue formation at the lesion site via mouse mast cell protease 6 (mMCP6). In this study, we investigated whether recombinant mMCP6 can be used therapeutically to improve the functional outcome after SCI. Therefore, we applied mMCP6 locally via an intrathecal catheter in the subacute phase after a spinal cord hemisection injury in mice. Our findings showed that hind limb motor function was significantly improved in mice that received recombinant mMCP6 compared with the vehicle-treated group. In contrast to our previous findings in mMCP6 knockout mice, the lesion size and expression levels of the scar components fibronectin, laminin, and axon-growth-inhibitory chondroitin sulfate proteoglycans were not affected by the treatment with recombinant mMCP6. Surprisingly, no difference in infiltration of CD4+ T cells and reactivity of Iba-1+ microglia/macrophages at the lesion site was observed between the mMCP6-treated mice and control mice. Additionally, local protein levels of the pro- and anti-inflammatory mediators IL-1ß, IL-2, IL-4, IL-6, IL-10, TNF-α, IFNγ, and MCP-1 were comparable between the two treatment groups, indicating that locally applied mMCP6 did not affect inflammatory processes after injury. However, the increase in locomotor performance in mMCP6-treated mice was accompanied by reduced demyelination and astrogliosis in the perilesional area after SCI. Consistently, we found that TNF-α/IL-1ß-astrocyte activation was decreased and that oligodendrocyte precursor cell (OPC) differentiation was increased after recombinant mMCP6 treatment in vitro. Mechanistically, this suggests effects of mMCP6 on reducing astrogliosis and improving (re)myelination in the spinal cord after injury. In conclusion, these data show for the first time that recombinant mMCP6 is therapeutically active in enhancing recovery after SCI.


Asunto(s)
Remielinización , Traumatismos de la Médula Espinal , Ratones , Animales , Gliosis/tratamiento farmacológico , Gliosis/metabolismo , Cicatriz/tratamiento farmacológico , Cicatriz/prevención & control , Mastocitos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Ratones Noqueados , Recuperación de la Función , Modelos Animales de Enfermedad , Mamíferos
3.
J Neuroinflammation ; 19(1): 102, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35488301

RESUMEN

BACKGROUND: Spinal cord injury (SCI) elicits a robust neuroinflammatory reaction which, in turn, exacerbates the initial mechanical damage. Pivotal players orchestrating this response are macrophages (Mφs) and microglia. After SCI, the inflammatory environment is dominated by pro-inflammatory Mφs/microglia, which contribute to secondary cell death and prevent regeneration. Therefore, reprogramming Mφ/microglia towards a more anti-inflammatory and potentially neuroprotective phenotype has gained substantial therapeutic interest in recent years. Interleukin-13 (IL-13) is a potent inducer of such an anti-inflammatory phenotype. In this study, we used genetically modified Mφs as carriers to continuously secrete IL-13 (IL-13 Mφs) at the lesion site. METHODS: Mφs were genetically modified to secrete IL-13 (IL-13 Mφs) and were phenotypically characterized using qPCR, western blot, and ELISA. To analyze the therapeutic potential, the IL-13 Mφs were intraspinally injected at the perilesional area after hemisection SCI in female mice. Functional recovery and histopathological improvements were evaluated using the Basso Mouse Scale score and immunohistochemistry. Neuroprotective effects of IL-13 were investigated using different cell viability assays in murine and human neuroblastoma cell lines, human neurospheroids, as well as murine organotypic brain slice cultures. RESULTS: In contrast to Mφs prestimulated with recombinant IL-13, perilesional transplantation of IL-13 Mφs promoted functional recovery following SCI in mice. This improvement was accompanied by reduced lesion size and demyelinated area. The local anti-inflammatory shift induced by IL-13 Mφs resulted in reduced neuronal death and fewer contacts between dystrophic axons and Mφs/microglia, suggesting suppression of axonal dieback. Using IL-4Rα-deficient mice, we show that IL-13 signaling is required for these beneficial effects. Whereas direct neuroprotective effects of IL-13 on murine and human neuroblastoma cell lines or human neurospheroid cultures were absent, IL-13 rescued murine organotypic brain slices from cell death, probably by indirectly modulating the Mφ/microglia responses. CONCLUSIONS: Collectively, our data suggest that the IL-13-induced anti-inflammatory Mφ/microglia phenotype can preserve neuronal tissue and ameliorate axonal dieback, thereby promoting recovery after SCI.


Asunto(s)
Neuroblastoma , Fármacos Neuroprotectores , Traumatismos de la Médula Espinal , Animales , Femenino , Humanos , Interleucina-13/uso terapéutico , Macrófagos/metabolismo , Ratones , Fármacos Neuroprotectores/uso terapéutico , Traumatismos de la Médula Espinal/patología
4.
Brain ; 144(10): 2933-2945, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34244729

RESUMEN

After spinal cord injury, macrophages can exert either beneficial or detrimental effects depending on their phenotype. Aside from their critical role in inflammatory responses, macrophages are also specialized in the recognition, engulfment, and degradation of pathogens, apoptotic cells, and tissue debris. They promote remyelination and axonal regeneration by removing inhibitory myelin components and cellular debris. However, excessive intracellular presence of lipids and dysregulated intracellular lipid homeostasis result in the formation of foamy macrophages. These develop a pro-inflammatory phenotype that may contribute to further neurological decline. Additionally, myelin-activated macrophages play a crucial role in axonal dieback and retraction. Here, we review the opposing functional consequences of phagocytosis by macrophages in spinal cord injury, including remyelination and regeneration versus demyelination, degeneration, and axonal dieback. Furthermore, we discuss how targeting the phagocytic ability of macrophages may have therapeutic potential for the treatment of spinal cord injury.


Asunto(s)
Enfermedades Desmielinizantes/metabolismo , Macrófagos/fisiología , Fagocitosis/fisiología , Remielinización/fisiología , Traumatismos de la Médula Espinal/metabolismo , Animales , Enfermedades Desmielinizantes/inmunología , Humanos , Traumatismos de la Médula Espinal/inmunología
5.
Glia ; 69(2): 326-345, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32865285

RESUMEN

Cellular models of induced pluripotent stem cell (iPSC)-derived microglia and macrophages are an emerging toolbox to investigate neuroinflammation in vitro. We previously demonstrated that murine iPSC-microglia and iPSC-macrophages display phenotypical activation properties highly comparable to microglia and macrophages in vivo. Here we extended the characterization of iPSC-microglia and iPSC-macrophages with the analysis of their transcriptome profile. Next, these cellular models were employed to evaluate neuroimmune toxicity in vitro and to investigate the immune-modulatory properties of interleukin 13 (IL13), a cytokine known for its ability to protect against neuroinflammation-induced pathology by modulating microglia and macrophage activation. iPSC-microglia and iPSC-macrophages, in co-culture with astrocyte-committed neural stem cells (NSC), were (pre)treated with IL13 and stimulated with lipopolysaccharide (LPS) and interferon γ (IFNγ), to assess how IL13 modulates their inflammatory response. Additionally, the use of luciferase-expressing NSC (Luc-NSC) allowed real-time monitoring of immune-mediated neurotoxicity. Despite the known anti-inflammatory properties of IL13, iPSC-microglia primed with IL13 before LPS + IFNγ stimulation significantly increased NO secretion. This was associated with a marked reduction of the luminescence signal produced by Luc-NSC. Interestingly, we observed that IL13 signaling has a divergent functional outcome in microglia as compared to macrophages, as for the latter no major alterations in NO release and Luc-NSC viability were observed upon IL13 (pre)treatment. Finally, the striking IL13-induced upregulation of NO secretion by microglia under pro-inflammatory conditions was confirmed in vivo, where intracerebral delivery of IL13 increased inducible nitric oxide synthase mRNA expression. Concluding, we applied iPSC-derived neuroimmune cell culture models to identify distinct neuroimmune (toxicity) responses of microglia and macrophages to IL13-based immune modulation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Microglía , Animales , Técnicas de Cultivo de Célula , Interleucina-13 , Lipopolisacáridos/toxicidad , Macrófagos , Ratones , Enfermedades Neuroinflamatorias
6.
J Neuroinflammation ; 17(1): 224, 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32718316

RESUMEN

BACKGROUND: The presence of foamy macrophages and microglia containing intracellular myelin remnants is a pathological hallmark of neurodegenerative disorders such as multiple sclerosis (MS). Despite the importance of myelin internalization in affecting both central nervous system repair and neuroinflammation, the receptors involved in myelin clearance and their impact on the phagocyte phenotype and lesion progression remain to be clarified. METHODS: Flow cytometry, quantitative PCR, and immunohistochemistry were used to define the mRNA and protein abundance of CD36 in myelin-containing phagocytes. The impact of CD36 and nuclear factor erythroid 2-related factor 2 (NRF2) on the phagocytic and inflammatory features of macrophages and microglia was assessed using a pharmacological CD36 inhibitor (sulfo-N-succinimidyl oleate) and Nrf2-/- bone marrow-derived macrophages. Finally, the experimental autoimmune encephalomyelitis (EAE) model was used to establish the impact of CD36 inhibition on neuroinflammation and myelin phagocytosis in vivo. RESULTS: Here, we show that the fatty acid translocase CD36 is required for the uptake of myelin debris by macrophages and microglia, and that myelin internalization increased CD36 expression through NRF2. Pharmacological inhibition of CD36 promoted the inflammatory properties of myelin-containing macrophages and microglia in vitro, which was paralleled by a reduced activity of the anti-inflammatory lipid-sensing liver X receptors and peroxisome proliferator-activated receptors. By using the EAE model, we provide evidence that CD36 is essential for myelin debris clearance in vivo. Importantly, CD36 inhibition markedly increased the neuroinflammatory burden and disease severity in the EAE model. CONCLUSION: Altogether, we show for the first time that CD36 is crucial for clearing myelin debris and suppressing neuroinflammation in demyelinating disorders such as MS.


Asunto(s)
Antígenos CD36/metabolismo , Macrófagos/metabolismo , Microglía/metabolismo , Vaina de Mielina/metabolismo , Fagocitosis/fisiología , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Femenino , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Endogámicos C57BL
7.
J Allergy Clin Immunol ; 144(4S): S4-S18, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30468774

RESUMEN

Mast cells (MCs), which are well known for their effector functions in TH2-skewed allergic and also autoimmune inflammation, have become increasingly acknowledged for their role in protection of health. It is now clear that they are also key modulators of immune responses at interface organs, such as the skin or gut. MCs can prime tissues for adequate inflammatory responses and cooperate with dendritic cells in T-cell activation. They also regulate harmful immune responses in trauma and help to successfully orchestrate pregnancy. This review focuses on the beneficial effects of MCs on tissue homeostasis and elimination of toxins or venoms. MCs can enhance pathogen clearance in many bacterial, viral, and parasitic infections, such as through Toll-like receptor 2-triggered degranulation, secretion of antimicrobial cathelicidins, neutrophil recruitment, or provision of extracellular DNA traps. The role of MCs in tumors is more ambiguous; however, encouraging new findings show they can change the tumor microenvironment toward antitumor immunity when adequately triggered. Uterine tissue remodeling by α-chymase (mast cell protease [MCP] 5) is crucial for successful embryo implantation. MCP-4 and the tryptase MCP-6 emerge to be protective in central nervous system trauma by reducing inflammatory damage and excessive scar formation, thereby protecting axon growth. Last but not least, proteases, such as carboxypeptidase A, released by FcεRI-activated MCs detoxify an increasing number of venoms and endogenous toxins. A better understanding of the plasticity of MCs will help improve these advantageous effects and hint at ways to cut down detrimental MC actions.


Asunto(s)
Inmunidad Innata , Infecciones/inmunología , Mastocitos/inmunología , Animales , Catelicidinas/metabolismo , Degranulación de la Célula , Implantación del Embrión , Femenino , Homeostasis , Humanos , Embarazo , Receptor Toll-Like 2/metabolismo
8.
Int J Mol Sci ; 21(12)2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32630606

RESUMEN

Pan-histone deacetylase (HDAC) inhibition with valproic acid (VPA) has beneficial effects after spinal cord injury (SCI), although with side effects. We focused on specific HDAC8 inhibition, because it is known to reduce anti-inflammatory mediators produced by macrophages (Mφ). We hypothesized that HDAC8 inhibition improves functional recovery after SCI by reducing pro-inflammatory classically activated Mφ. Specific HDAC8 inhibition with PCI-34051 reduced the numbers of perilesional Mφ as measured by histological analyses, but did not improve functional recovery (Basso Mouse Scale). We could not reproduce the published improvement of functional recovery described in contusion SCI models using VPA in our T-cut hemisection SCI model. The presence of spared fibers might be the underlying reason for the conflicting data in different SCI models.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Animales , Antiinflamatorios/farmacología , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Inflamación/tratamiento farmacológico , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Recuperación de la Función/efectos de los fármacos , Médula Espinal/patología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/inmunología , Ácido Valproico/farmacología
9.
Brain Behav Immun ; 80: 129-145, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30851378

RESUMEN

A disintegrin and metalloproteinase 17 (ADAM17) is the major sheddase involved in the cleavage of a plethora of cytokines, cytokine receptors and growth factors, thereby playing a substantial role in inflammatory and regenerative processes after central nervous system trauma. By making use of a hypomorphic ADAM17 knockin mouse model as well as pharmacological ADAM10/ADAM17 inhibitors, we showed that ADAM17-deficiency or inhibition significantly increases clearance of apoptotic cells, promotes axon growth and improves functional recovery after spinal cord injury (SCI) in mice. Microglia-specific ADAM17-knockout (ADAM17flox+/+-Cx3Cr1 Cre+/-) mice also showed improved functional recovery similar to hypomorphic ADAM17 mice. In contrast, endothelial-specific (ADAM17flox+/+-Cdh5Pacs Cre+/-) and macrophage-specific (ADAM17flox+/+-LysM Cre+/-) ADAM17-knockout mice or bone marrow chimera with transplanted ADAM17-deficient macrophages, displayed no functional improvement compared to wild type mice. These data indicate that ADAM17 expression on microglia cells (and not on macrophages or endothelial cells) plays a detrimental role in inflammation and functional recovery after SCI.


Asunto(s)
Proteína ADAM17/metabolismo , Microglía/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Inflamación/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fagocitosis/inmunología , Fagocitosis/fisiología , Recuperación de la Función/fisiología
10.
J Cell Physiol ; 232(2): 298-308, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27403604

RESUMEN

Angiogenesis is associated with changes in endothelial cell (EC) proliferation and tube formation, controlled by extracellular receptor-activated kinase (ERK)/mitogen activated protein kinase (MAPK) and Akt signaling. Important regulators of these systems include hormones acting on G-protein-coupled receptors, such as beta 2-adrenoceptors (ß2-ARs). In central nervous system (CNS) trauma, the importance of ß2-AR modulation has been highlighted, although the effects on revascularization remain unclear. Vascular protection and revascularization are, however, key to support regeneration. We have investigated the angiogenic capacity of the specific ß2-AR agonist terbutaline on ECs derived from the CNS, namely bEnd.3-cells. As angiogenesis is a multistep process involving increased proliferation and tube formation of ECs, we investigated the effects of terbutaline on these processes. We show that terbutaline significantly induced bEnd.3 tube formation in a matrigel in vitro assay. Moreover, administration of specific inhibitors of ERK and Akt signaling both inhibited terbutaline-induced tube formation. The proliferation rate of the ECs was not affected. In order to investigate the general effects of terbutaline in an organotypic system, we have used the chick chorioallantoic membrane (CAM)-assay. Most importantly, terbutaline increased the number of blood vessels in this in ovo setting. Although we observed a positive trend, the systemic administration of terbutaline did not significantly improve the functional outcome, nor did it affect revascularization in our spinal cord injury model. In conclusion, these data indicate that terbutaline is promising to stimulate blood vessel formation, underscoring the importance of further research into the angiotherapeutic relevance of terbutaline and ß2-AR signaling after CNS-trauma. J. Cell. Physiol. 232: 298-308, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transducción de Señal/efectos de los fármacos , Terbutalina/farmacología , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Pollos , Membrana Corioalantoides/efectos de los fármacos , Membrana Corioalantoides/metabolismo , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Ratones , Modelos Biológicos , Regeneración/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Terbutalina/uso terapéutico
11.
Stem Cells ; 34(7): 1971-84, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26992046

RESUMEN

Transplantation of mesenchymal stem cells (MSCs) into injured or diseased tissue-for the in situ delivery of a wide variety of MSC-secreted therapeutic proteins-is an emerging approach for the modulation of the clinical course of several diseases and traumata. From an emergency point-of-view, allogeneic MSCs have numerous advantages over patient-specific autologous MSCs since "off-the-shelf" cell preparations could be readily available for instant therapeutic intervention following acute injury. Although we confirmed the in vitro immunomodulatory capacity of allogeneic MSCs on antigen-presenting cells with standard coculture experiments, allogeneic MSC grafts were irrevocably rejected by the host's immune system upon either intramuscular or intracerebral transplantation. In an attempt to modulate MSC allograft rejection in vivo, we transduced MSCs with an interleukin-13 (IL13)-expressing lentiviral vector. Our data clearly indicate that prolonged survival of IL13-expressing allogeneic MSC grafts in muscle tissue coincided with the induction of an alternatively activated macrophage phenotype in vivo and a reduced number of alloantigen-reactive IFNγ- and/or IL2-producing CD8(+) T cells compared to nonmodified allografts. Similarly, intracerebral IL13-expressing MSC allografts also exhibited prolonged survival and induction of an alternatively activated macrophage phenotype, although a peripheral T cell component was absent. In summary, this study demonstrates that both innate and adaptive immune responses are effectively modulated in vivo by locally secreted IL13, ultimately resulting in prolonged MSC allograft survival in both muscle and brain tissue. Stem Cells 2016;34:1971-1984.


Asunto(s)
Supervivencia de Injerto/inmunología , Interleucina-13/farmacología , Isoantígenos/inmunología , Activación de Linfocitos/efectos de los fármacos , Macrófagos/metabolismo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Linfocitos T/inmunología , Aloinjertos/efectos de los fármacos , Aloinjertos/inmunología , Animales , Formación de Anticuerpos/efectos de los fármacos , Células Presentadoras de Antígenos/efectos de los fármacos , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Ingeniería Genética , Inmunomodulación/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Microglía/efectos de los fármacos , Microglía/patología , Linfocitos T/efectos de los fármacos
12.
FASEB J ; 30(5): 2040-57, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26917739

RESUMEN

An important barrier for axon regeneration and recovery after traumatic spinal cord injury (SCI) is attributed to the scar that is formed at the lesion site. Here, we investigated the effect of mouse mast cell protease (mMCP) 6, a mast cell (MC)-specific tryptase, on scarring and functional recovery after a spinal cord hemisection injury. Functional recovery was significantly impaired in both MC-deficient and mMCP6-knockout (mMCP6(-/-)) mice after SCI compared with wild-type control mice. This decrease in locomotor performance was associated with an increased lesion size and excessive scarring at the injury site. Axon growth-inhibitory chondroitin sulfate proteoglycans and the extracellular matrix components fibronectin, laminin, and collagen IV were significantly up-regulated in MC-deficient and mMCP6(-/-) mice, with an increase in scar volume between 23 and 32%. A degradation assay revealed that mMCP6 directly cleaves fibronectin and collagen IV in vitro In addition, gene expression levels of the scar components fibronectin, aggrecan, and collagen IV were increased up to 6.8-fold in mMCP6(-/-) mice in the subacute phase after injury. These data indicate that endogenous mMCP6 has scar-suppressing properties after SCI via indirect cleavage of axon growth-inhibitory scar components and alteration of the gene expression profile of these factors.-Vangansewinkel, T., Geurts, N., Quanten, K., Nelissen, S., Lemmens, S., Geboes, L., Dooley, D., Vidal, P. M., Pejler, G., Hendrix, S. Mast cells promote scar remodeling and functional recovery after spinal cord injury via mouse mast cell protease 6.


Asunto(s)
Cicatriz/metabolismo , Mastocitos/fisiología , Traumatismos de la Médula Espinal/metabolismo , Triptasas/metabolismo , Cicatrización de Heridas/fisiología , Animales , Citocinas/genética , Citocinas/metabolismo , Matriz Extracelular , Regulación Enzimológica de la Expresión Génica/fisiología , Ratones , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo , Triptasas/genética
13.
Glia ; 64(12): 2181-2200, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27685637

RESUMEN

Detrimental inflammatory responses in the central nervous system are a hallmark of various brain injuries and diseases. With this study we provide evidence that lentiviral vector-mediated expression of the immune-modulating cytokine interleukin 13 (IL-13) induces an alternative activation program in both microglia and macrophages conferring protection against severe oligodendrocyte loss and demyelination in the cuprizone mouse model for multiple sclerosis (MS). First, IL-13 mediated modulation of cuprizone induced lesions was monitored using T2 -weighted magnetic resonance imaging and magnetization transfer imaging, and further correlated with quantitative histological analyses for inflammatory cell influx, oligodendrocyte death, and demyelination. Second, following IL-13 immune gene therapy in cuprizone-treated eGFP+ bone marrow chimeric mice, we provide evidence that IL-13 directs the polarization of both brain-resident microglia and infiltrating macrophages towards an alternatively activated phenotype, thereby promoting the conversion of a pro-inflammatory environment toward an anti-inflammatory environment, as further evidenced by gene expression analyses. Finally, we show that IL-13 immune gene therapy is also able to limit lesion severity in a pre-existing inflammatory environment. In conclusion, these results highlight the potential of IL-13 to modulate microglia/macrophage responses and to improve disease outcome in a mouse model for MS. GLIA 2016;64:2181-2200.


Asunto(s)
Enfermedades Desmielinizantes/terapia , Encefalitis/terapia , Terapia Genética/métodos , Interleucina-13 , Macrófagos/efectos de los fármacos , Microglía/efectos de los fármacos , Animales , Antígenos de Diferenciación/metabolismo , Trasplante de Médula Ósea , Cuprizona/toxicidad , Citocinas/genética , Citocinas/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/diagnóstico por imagen , Modelos Animales de Enfermedad , Encefalitis/inducido químicamente , Encefalitis/diagnóstico por imagen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-13/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibidores de la Monoaminooxidasa/toxicidad , Proteínas de la Mielina/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Transducción Genética
14.
J Neuroinflammation ; 13(1): 101, 2016 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-27154002

RESUMEN

BACKGROUND: The cytokine, interleukin (IL)-25, is thought to be critically involved in inducing a type 2 immune response which may contribute to regeneration after central nervous system (CNS) trauma. We investigated whether applying recombinant IL-25, locally or systemically, in a mouse model of spinal cord injury (SCI) improves functional and histological recovery. FINDINGS: Repeated systemic administration of IL-25 did not influence functional recovery following SCI. In contrast, a single local administration of IL-25 significantly worsened locomotor outcome, which was evident from a decreased Basso mouse scale (BMS) score compared with phosphate-buffered saline (PBS)-treated controls. This was accompanied by a significant increase in lesion size, demyelination, and T helper cell infiltration. CONCLUSIONS: These data show for the first time that IL-25 is either ineffective when applied systemically or detrimental to spinal cord recovery when applied locally. Our findings question the potential neuroprotective role of IL-25 following CNS trauma.


Asunto(s)
Interleucinas/metabolismo , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Antígenos CD4/metabolismo , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Interleucinas/farmacología , Locomoción/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Proteínas de Microfilamentos/metabolismo , Proteína Básica de Mielina/metabolismo , Traumatismos de la Médula Espinal/patología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Factores de Tiempo
15.
J Neuroinflammation ; 13(1): 243, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27618915

RESUMEN

BACKGROUND: Recent evidence implicates antibody responses as pivotal damaging factors in spinal cord injury (SCI)-induced neuroinflammation. To date, only a limited number of the antibody targets have been uncovered, and the discovery of novel targets with pathologic and clinical relevance still represents a major challenge. METHODS: In this study, we, therefore, applied an unbiased, innovative and powerful strategy, called serological antigen selection (SAS), to fully identify the complex information present within the antibody repertoire of SCI patients. RESULTS: We constructed a high-quality cDNA phage display library derived from human spinal cord tissue to screen for antibody reactivity in pooled plasma samples from traumatic SCI patients (n = 10, identification cohort). By performing SAS, we identified a panel of 19 antigenic targets to which the individual samples of the plasma pool showed antibody reactivity. Sequence analysis to identify the selected antigenic targets uncovered 5 known proteins, to which antibody reactivity has not been associated with SCI before, as well as linear peptides. Immunoreactivity against 9 of the 19 novel identified targets was validated in 41 additional SCI patients and an equal number of age- and gender-matched healthy subjects. Overall, we found elevated antibody levels to at least 1 of the 9 targets in 51 % of our total SCI patient cohort (n = 51) with a specificity of 73 %. By combining 6 of these 9 targets into a panel, an overall reactivity of approximately half of the SCI patients could be maintained while increasing the specificity to 82 %. CONCLUSIONS: In conclusion, our innovative high-throughput approach resulted in the identification of previously unexplored antigenic targets with elevated immunoreactivity in more than 50 % of the SCI patients. Characterization of the validated antibody responses and their targets will not only provide new insight into the underlying disease processes of SCI pathology but also significantly contribute to uncovering potential antibody biomarkers for SCI patients.


Asunto(s)
Anticuerpos/sangre , Antígenos/inmunología , Traumatismos de la Médula Espinal/sangre , Traumatismos de la Médula Espinal/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Ensayo de Inmunoadsorción Enzimática , Femenino , Biblioteca de Genes , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Pruebas Serológicas
16.
J Neuroinflammation ; 13(1): 288, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27829467

RESUMEN

BACKGROUND: Promoting the neuroprotective and repair-inducing effector functions of microglia and macrophages, by means of M2 polarisation or alternative activation, is expected to become a new therapeutic approach for central nervous system (CNS) disorders in which detrimental pro-inflammatory microglia and/or macrophages display a major contribution to the neuropathology. In this study, we present a novel in vivo approach using intracerebral grafting of mesenchymal stem cells (MSC) genetically engineered to secrete interleukin 13 (IL13-MSC). METHODS: In the first experimental setup, control MSC and IL13-MSC were grafted in the CNS of eGFP+ bone marrow chimaeric C57BL/6 mice to histologically evaluate IL13-mediated expression of several markers associated with alternative activation, including arginase1 and Ym1, on MSC graft-recognising microglia and MSC graft-infiltrating macrophages. In the second experimental setup, IL13-MSC were grafted on the right side (or on both the right and left sides) of the splenium of the corpus callosum in wild-type C57BL/6 mice and in C57BL/6 CX3CR1eGFP/+CCR2RFP/+ transgenic mice. Next, CNS inflammation and demyelination was induced by means of a cuprizone-supplemented diet. The influence of IL13-MSC grafting on neuropathological alterations was monitored by non-invasive T 2-weighted magnetic resonance imaging (MRI) and quantitative histological analyses, as compared to cuprizone-treated mice with control MSC grafts and/or cuprizone-treated mice without MSC injection. RESULTS: In the first part of this study, we demonstrate that MSC graft-associated microglia and MSC graft-infiltrating macrophages are forced into alternative activation upon grafting of IL13-MSC, but not upon grafting of control MSC. In the second part of this study, we demonstrate that grafting of IL13-MSC, in addition to the recruitment of M2 polarised macrophages, limits cuprizone-induced microgliosis, oligodendrocyte death and demyelination. Furthermore, we here demonstrate that injection of IL13-MSC at both sides of the splenium leads to a superior protective effect as compared to a single injection at one side of the splenium. CONCLUSIONS: Controlled and localised production of IL13 by means of intracerebral MSC grafting has the potential to modulate cell graft- and pathology-associated microglial/macrophage responses, and to interfere with oligodendrocyte death and demyelinating events in the cuprizone mouse model.


Asunto(s)
Cuprizona/toxicidad , Enfermedades Desmielinizantes , Gliosis/etiología , Interleucina-13/metabolismo , Trasplante de Células Madre Mesenquimatosas , Inhibidores de la Monoaminooxidasa/toxicidad , Oligodendroglía/patología , Animales , Línea Celular Transformada , Citocinas/genética , Citocinas/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/diagnóstico por imagen , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/cirugía , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Imagen por Resonancia Magnética , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Básica de Mielina/metabolismo , Oligodendroglía/efectos de los fármacos
17.
Clin Anat ; 29(1): 65-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26475573

RESUMEN

Human cadaveric specimens are an important resource for research, particularly in biomechanical studies, but their use also raises ethical questions and cannot simply be taken for granted. It was asked how much information authors publishing musculoskeletal research actually give about such specimens and about how they were acquired. The aim was to formulate recommendations on how this reporting might be improved. Relevant articles published between 2009 and 2012 in four North American or European journals were scanned for information regarding the characteristics of the human specimens used, their institutional source and the ethical or legal context of their acquisition. While the majority of articles report biological characteristics of specimens (sex, age at death, preservation method), only 40% of articles refer to body donation, only 23% report the institution that provided specimens, and only 17% refer to some kind of formalized approval of their research. There were regional and journal-to-journal differences. No standard for reporting studies involving human specimens could be detected. It is suggested that such a standard be developed by researchers and editors. Information on the source of specimens and on the ethical or legal basis should be regularly reported to acknowledge this unique research resource and to preserve the good relationship between researchers and the communities, that provide the required specimens by body donation and upon which researchers depend.


Asunto(s)
Anatomía/educación , Investigación Biomédica , Cadáver , Sistema Musculoesquelético/anatomía & histología , Obtención de Tejidos y Órganos , Humanos , Publicaciones Periódicas como Asunto
18.
Med Res Rev ; 35(4): 653-77, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25546087

RESUMEN

Many researchers have attempted to pharmacologically modulate the adrenergic system to control locomotion, pain, and spasms after central nervous system (CNS) trauma, although such efforts have led to conflicting results. Despite this, multiple studies highlight that α-adrenoceptors (α-ARs) are promising therapeutic targets because in the CNS, they are involved in reactivity to stressors and regulation of locomotion, pain, and spasms. These functions can be activated by direct modulation of these receptors on neuronal networks in the brain and the spinal cord. In addition, these multifunctional receptors are also broadly expressed on immune cells. This suggests that they might play a key role in modulating immunological responses, which may be crucial in treating spinal cord injury and traumatic brain injury as both diseases are characterized by a strong inflammatory component. Reducing the proinflammatory response will create a more permissive environment for axon regeneration and may support neuromodulation in combination therapies. However, pharmacological interventions are hindered by adrenergic system complexity and the even more complicated anatomical and physiological changes in the CNS after trauma. This review is the first concise overview of the pros and cons of α-AR modulation in the context of CNS trauma.


Asunto(s)
Dolor/metabolismo , Parálisis/metabolismo , Receptores Adrenérgicos alfa/metabolismo , Espasmo/metabolismo , Traumatismos del Sistema Nervioso/metabolismo , Animales , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/metabolismo , Humanos , Dolor/complicaciones , Parálisis/complicaciones , Espasmo/complicaciones , Traumatismos del Sistema Nervioso/complicaciones
19.
Neurobiol Dis ; 62: 260-72, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24075853

RESUMEN

Mast cells (MCs) are found abundantly in the central nervous system and play a complex role in neuroinflammatory diseases such as multiple sclerosis and stroke. In the present study, we show that MC-deficient Kit(W-sh/W-sh) mice display significantly increased astrogliosis and T cell infiltration as well as significantly reduced functional recovery after spinal cord injury compared to wildtype mice. In addition, MC-deficient mice show significantly increased levels of MCP-1, TNF-α, IL-10 and IL-13 protein levels in the spinal cord. Mice deficient in mouse mast cell protease 4 (mMCP4), an MC-specific chymase, also showed increased MCP-1, IL-6 and IL-13 protein levels in spinal cord samples and a decreased functional outcome after spinal cord injury. A degradation assay using supernatant from MCs derived from either mMCP4(-/-) mice or controls revealed that mMCP4 cleaves MCP-1, IL-6, and IL-13 suggesting a protective role for MC proteases in neuroinflammation. These data show for the first time that MCs may be protective after spinal cord injury and that they may reduce CNS damage by degrading inflammation-associated cytokines via the MC-specific chymase mMCP4.


Asunto(s)
Citocinas/metabolismo , Mastocitos/metabolismo , Serina Endopeptidasas/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Animales , Astrocitos/patología , Femenino , Mediadores de Inflamación/metabolismo , Locomoción/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Traumatismos de la Médula Espinal/patología , Linfocitos T/metabolismo , Vértebras Torácicas/lesiones
20.
FASEB J ; 27(3): 920-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23193170

RESUMEN

Mast cells (MCs) are found abundantly in the brain and the meninges and play a complex role in neuroinflammatory diseases, such as stroke and multiple sclerosis. Here, we show that MC-deficient Kit/Kit mice display increased neurodegeneration in the lesion area after brain trauma. Furthermore, MC-deficient mice display significantly more brain inflammation, namely an increased presence of macrophages/microglia, as well as dramatically increased T-cell infiltration at days 4 and 14 after injury, combined with increased astrogliosis at day 14 following injury. The number of proliferating Ki67 macrophages/microglia and astrocytes around the lesion area is more than doubled in these MC-deficient mice. In parallel, MC-deficient Kit mice display increased presence of macrophages/microglia at day 4, and persistent astrogliosis at day 4 and 14 after brain trauma. Further analysis of mice deficient in one of the most relevant MC proteases, i.e., mouse mast cell protease 4 (mMCP-4), revealed that astrogliosis and T-cell infiltration are significantly increased in mMCP-4-knockout mice. Finally, treatment with an inhibitor of mMCP-4 significantly increased macrophage/microglia numbers and astrogliosis. These data suggest that MCs exert protective functions after trauma, at least in part via mMCP-4, by suppressing exacerbated inflammation via their proteases.


Asunto(s)
Lesiones Encefálicas/enzimología , Quimasas/metabolismo , Mastocitos/enzimología , Proteínas del Tejido Nervioso/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Lesiones Encefálicas/genética , Lesiones Encefálicas/patología , Quimasas/antagonistas & inhibidores , Quimasas/genética , Inflamación/enzimología , Inflamación/genética , Inflamación/patología , Macrófagos/metabolismo , Macrófagos/patología , Mastocitos/patología , Ratones , Ratones Transgénicos , Microglía/metabolismo , Microglía/patología , Proteínas del Tejido Nervioso/genética , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Serina Endopeptidasas/genética , Linfocitos T/metabolismo , Linfocitos T/patología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA