RESUMEN
Determining the fate of the Pauling entropy in the classical spin ice material Dy_{2}Ti_{2}O_{7} with respect to the third law of thermodynamics has become an important test case for understanding the existence and stability of ice-rule states in general. The standard model of spin ice-the dipolar spin ice model-predicts an ordering transition at T≈0.15 K, but recent experiments by Pomaranski et al. suggest an entropy recovery over long timescales at temperatures as high as 0.5 K, much too high to be compatible with the theory. Using neutron scattering and specific heat measurements at low temperatures and with long timescales (0.35 K/10^{6} s and 0.5 K/10^{5} s, respectively) on several isotopically enriched samples, we find no evidence of a reduction of ice-rule correlations or spin entropy. High-resolution simulations of the neutron structure factor show that the spin correlations remain well described by the dipolar spin ice model at all temperatures. Furthermore, by careful consideration of hyperfine contributions, we conclude that the original entropy measurements of Ramirez et al. are, after all, essentially correct: The short-time relaxation method used in that study gives a reasonably accurate estimate of the equilibrium spin ice entropy due to a cancellation of contributions.
RESUMEN
We provide an overview of a pressure cell designed to apply uniaxial pressure to single crystals for the study, by neutron scattering techniques, of strongly correlated magnetic systems and, in particular, quantum magnets. A detailed overview of the pressure cell components, their requirements, and links to the scientific and technical specifications are presented. The pressure cell is able to accommodate a 200 mm3 single crystal that can be pressurized up to 2 GPa at cryogenic temperatures. The pressure cell is consistent with the requirements of inelastic neutron scattering and, importantly, neutron polarization analysis. A particular strength of the uniaxial pressure cell is the highly uniform and low background for a wide scattering angle of 360° horizontally and ±20° vertically. We show the performance of the uniaxial pressure cell using a relevant neutron scattering instrument, the polarized diffuse scattering instrument, D7. The experiments confirm that the cell complies with the scientific and technical requirements. This uniaxial pressure cell will provide a useful additional tool in the sample environment suite available for the study of quantum magnetism.
RESUMEN
The description and detection of unconventional magnetic states, such as spin liquids, is a recurring topic in condensed matter physics. While much of the efforts have traditionally been directed at geometrically frustrated antiferromagnets, recent studies reveal that systems featuring competing antiferromagnetic and ferromagnetic interactions are also promising candidate materials. We find that this competition leads to the notion of special temperatures, analogous to those of gases, at which the competing interactions balance, and the system is quasi-ideal. Although induced by weak perturbing interactions, these special temperatures are surprisingly high and constitute an accessible experimental diagnostic of eventual order or spin-liquid properties. The well characterised Hamiltonian and extended low-temperature susceptibility measurement of the canonical frustrated ferromagnet Dy2Ti2O7 enables us to formulate both a phenomenological and microscopic theory of special temperatures for magnets. Other members of this class of magnets include kapellasite Cu3Zn(OH)6Cl2 and the spinel GeCo2O4.
RESUMEN
In magnetic systems the combined effects of disorder and frustration may cause the moments to freeze into a disordered state at a spin-glass transition. Recent experiments have shown that the rare earth compound LiHo(0.045)Y(0.955)F(4) freezes, but that the transition is unreachable because of dynamics that are 10(7) times slower than in ordinary spin-glass materials. This conclusion refutes earlier investigations reporting a speed-up of the dynamics into an exotic anti-glass phase caused by entanglement of quantum dipoles. Here we present a theory, backed by numerical simulations, which describes the material in terms of classical dipoles governed by Glauber dynamics. The dipoles freeze and we find that the ultra-slow dynamics are caused by rare, strongly ordered clusters, which give rise to a previously predicted, but hitherto unobserved, Griffths phase between the paramagnetic and spin-glass phases. In addition, the hyperfine interaction creates a high energy barrier to flipping the electronic spin, resulting in a clear signature in the dynamic correlation function.