Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 365
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Med Genet C Semin Med Genet ; : e32089, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884529

RESUMEN

Blepharophimosis with intellectual disability (BIS) is a recently recognized disorder distinct from Nicolaides-Baraister syndrome that presents with distinct facial features of blepharophimosis, developmental delay, and intellectual disability. BIS is caused by pathogenic variants in SMARCA2, that encodes the catalytic subunit of the superfamily II helicase group of the BRG1 and BRM-associated factors (BAF) forming the BAF complex, a chromatin remodeling complex involved in transcriptional regulation. Individuals bearing variants within the bipartite nuclear localization (BNL) signal domain of ADNP present with the neurodevelopmental disorder known as Helsmoortel-Van Der Aa Syndrome (HVDAS). Distinct DNA methylation profiles referred to as episignatures have been reported in HVDAS and BAF complex disorders. Due to molecular interactions between ADNP and BAF complex, and an overlapping craniofacial phenotype with narrowing of the palpebral fissures in a subset of patients with HVDAS and BIS, we hypothesized the possibility of a common phenotype-specific episignature. A distinct episignature was shared by 15 individuals with BIS-causing SMARCA2 pathogenic variants and 12 individuals with class II HVDAS caused by truncating pathogenic ADNP variants. This represents first evidence of a sensitive phenotype-specific episignature biomarker shared across distinct genetic conditions that also exhibit unique gene-specific episignatures.

2.
Hum Mol Genet ; 31(17): 2951-2963, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35416977

RESUMEN

Pierpont syndrome is a rare disorder characterized mainly by global developmental delay, unusual facial features, altered fat distribution in the limbs and hearing loss. A specific mutation (p.Tyr446Cys) in TBL1XR1, encoding a WD40 repeat-containing protein, which is a component of the SMRT/NCoR (silencing mediator retinoid and thyroid hormone receptors/nuclear receptor corepressors), has been reported as the genetic cause of Pierpont syndrome. Here, we used CRISPR-cas9 technology to generate a mutant mouse with the Y446C mutation in Tbl1xr1, which is also present in Pierpont syndrome. Several aspects of the phenotype were studied in the mutant mice: growth, body composition, hearing, motor behavior, thyroid hormone state and lipid and glucose metabolism. The mutant mice (Tbl1xr1Y446C/Y446C) displayed delayed growth, altered body composition with increased relative lean mass and impaired hearing. Expression of several genes involved in fatty acid metabolism differed in white adipose tissue, but not in liver or muscle of mutant mice compared to wild-type mice (Tbl1xr1+/+). No difference in thyroid hormone plasma concentrations was observed. Tbl1xr1Y446C/Y446C mice can be used as a model for distinct features of Pierpont syndrome, which will enable future studies on the pathogenic mechanisms underlying the various phenotypic characteristics.


Asunto(s)
Proteínas Nucleares , Proteínas Represoras , Animales , Discapacidades del Desarrollo , Modelos Animales de Enfermedad , Facies , Lipomatosis , Ratones , Mutación , Proteínas Nucleares/genética , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/metabolismo , Proteínas Represoras/genética , Hormonas Tiroideas
3.
Hum Mol Genet ; 31(21): 3729-3740, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35652444

RESUMEN

Rabenosyn (RBSN) is a conserved endosomal protein necessary for regulating internalized cargo. Here, we present clinical, genetic, cellular and biochemical evidence that two distinct RBSN missense variants are responsible for a novel Mendelian disorder consisting of progressive muscle weakness, facial dysmorphisms, ophthalmoplegia and intellectual disability. Using exome sequencing, we identified recessively acting germline alleles p.Arg180Gly and p.Gly183Arg, which are both situated in the FYVE domain of RBSN. We find that these variants abrogate binding to its cognate substrate phosphatidylinositol 3-phosphate (PI3P) and thus prevent its translocation to early endosomes. Although the endosomal recycling pathway was unaltered, mutant p.Gly183Arg patient fibroblasts show accumulation of cargo tagged for lysosomal degradation. Our results suggest that these variants are separation-of-function alleles, which cause a delay in endosomal maturation without affecting cargo recycling. We conclude that distinct germline mutations in RBSN cause non-overlapping phenotypes with specific and discrete endolysosomal cellular defects.


Asunto(s)
Endosomas , Discapacidad Intelectual , Proteínas de Transporte Vesicular , Humanos , Alelos , Endosomas/genética , Endosomas/metabolismo , Discapacidad Intelectual/genética , Lisosomas/genética , Lisosomas/metabolismo , Mutación , Transporte de Proteínas/genética , Proteínas de Transporte Vesicular/genética
4.
Nat Rev Genet ; 19(10): 649-666, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29995837

RESUMEN

Cornelia de Lange syndrome (CdLS) is an archetypical genetic syndrome that is characterized by intellectual disability, well-defined facial features, upper limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in any one of seven genes, all of which have a structural or regulatory function in the cohesin complex. Although recent advances in next-generation sequencing have improved molecular diagnostics, marked heterogeneity exists in clinical and molecular diagnostic approaches and care practices worldwide. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria, both for classic CdLS and non-classic CdLS phenotypes, molecular investigations, long-term management and care planning.


Asunto(s)
Síndrome de Cornelia de Lange , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Consenso , Síndrome de Cornelia de Lange/diagnóstico , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/fisiopatología , Síndrome de Cornelia de Lange/terapia , Estudios de Asociación Genética , Humanos
5.
Hum Mol Genet ; 30(1): 72-77, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33450762

RESUMEN

Ocular pterygium-digital keloid dysplasia (OPDKD) presents in childhood with ingrowth of vascularized connective tissue on the cornea leading to severely reduced vision. Later the patients develop keloids on digits but are otherwise healthy. The overgrowth in OPDKD affects body parts that typically have lower temperature than 37°C. We present evidence that OPDKD is associated with a temperature sensitive, activating substitution, p.(Asn666Tyr), in PDGFRB. Phosphorylation levels of PDGFRB and downstream targets were higher in OPDKD fibroblasts at 37°C but were further greatly increased at the average corneal temperature of 32°C. This suggests that the substitution cause significant constitutive autoactivation mainly at lower temperature. In contrast, a different substitution in the same codon, p.(Asn666Ser), is associated with Penttinen type of premature aging syndrome. This devastating condition is characterized by widespread tissue degeneration, including pronounced chronic ulcers and osteolytic resorption in distal limbs. In Penttinen syndrome fibroblasts, equal and high levels of phosphorylated PDGFRB was present at both 32°C and 37°C. This indicates that this substitution causes severe constitutive autoactivation of PDGFRB regardless of temperature. In line with this, most downstream targets were not affected by lower temperature. However, STAT1, important for tissue wasting, did show further increased phosphorylation at 32°C. Temperature-dependent autoactivation offers an explanation to the strikingly different clinical outcomes of substitutions in the Asn666 codon of PDGFRB.


Asunto(s)
Acroosteólisis/genética , Conjuntiva/anomalías , Deformidades Congénitas de las Extremidades/genética , Progeria/genética , Pterigion/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Anomalías Cutáneas/genética , Acroosteólisis/diagnóstico por imagen , Acroosteólisis/patología , Adolescente , Adulto , Sustitución de Aminoácidos/genética , Niño , Preescolar , Conjuntiva/diagnóstico por imagen , Conjuntiva/patología , Femenino , Humanos , Lactante , Deformidades Congénitas de las Extremidades/diagnóstico por imagen , Deformidades Congénitas de las Extremidades/patología , Masculino , Mutación Missense/genética , Fenotipo , Fosforilación/genética , Progeria/diagnóstico por imagen , Progeria/patología , Pterigion/diagnóstico por imagen , Pterigion/patología , Anomalías Cutáneas/patología , Temperatura , Adulto Joven
6.
Am J Hum Genet ; 106(3): 356-370, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32109418

RESUMEN

Genetic syndromes frequently present with overlapping clinical features and inconclusive or ambiguous genetic findings which can confound accurate diagnosis and clinical management. An expanding number of genetic syndromes have been shown to have unique genomic DNA methylation patterns (called "episignatures"). Peripheral blood episignatures can be used for diagnostic testing as well as for the interpretation of ambiguous genetic test results. We present here an approach to episignature mapping in 42 genetic syndromes, which has allowed the identification of 34 robust disease-specific episignatures. We examine emerging patterns of overlap, as well as similarities and hierarchical relationships across these episignatures, to highlight their key features as they are related to genetic heterogeneity, dosage effect, unaffected carrier status, and incomplete penetrance. We demonstrate the necessity of multiclass modeling for accurate genetic variant classification and show how disease classification using a single episignature at a time can sometimes lead to classification errors in closely related episignatures. We demonstrate the utility of this tool in resolving ambiguous clinical cases and identification of previously undiagnosed cases through mass screening of a large cohort of subjects with developmental delays and congenital anomalies. This study more than doubles the number of published syndromes with DNA methylation episignatures and, most significantly, opens new avenues for accurate diagnosis and clinical assessment in individuals affected by these disorders.


Asunto(s)
Metilación de ADN , Trastornos del Neurodesarrollo/genética , Fenotipo , Estudios de Cohortes , Heterogeneidad Genética , Humanos , Síndrome
7.
Am J Med Genet A ; 191(2): 370-377, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36322476

RESUMEN

The 5p13 microduplication syndrome is a contiguous gene syndrome characterized by developmental delay intellectual disability, hypotonia, unusual facies with marked variability, mild limb anomalies, and in some cases brain malformations. The duplication ranges in size from 0.25 to 1.08 Mb and encompasses five genes (NIPBL, SLC1A3, CPLANE1, NUP155, and WDR70), of which NIPBL has been suggested to be the main dose sensitive gene. All patients with duplication of the complete NIPBL gene reported thus far have been de novo. Here, we report a 25-week-old male fetus with hypertelorism, wide and depressed nasal bridge, depressed nasal tip, low-set ears, clenched hands, flexion contracture of elbows, knees, and left wrist, and bilateral clubfeet, bowing and shortening of long bones and brain malformation of dorsal part of callosal body. The fetus had a 667 kb gain at 5p13.2 encompassing SLC1A3, NIPBL and exons 22-52 of CPLANE1. The microduplication was inherited from the healthy father, in whom no indication for mosaicism was detected. The family demonstrates that incomplete penetrance of 5p13 microduplication syndrome may occur which is important in genetic counseling of families with this entity.


Asunto(s)
Anomalías Múltiples , Discapacidad Intelectual , Humanos , Masculino , Anomalías Múltiples/genética , Proteínas de Ciclo Celular/genética , Duplicación Cromosómica/genética , Padre , Feto , Discapacidad Intelectual/genética , Mosaicismo
8.
Am J Med Genet A ; 188(11): 3191-3228, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36062894

RESUMEN

An international group of clinicians working in the field of dysmorphology has initiated the standardization of terms used to describe human morphology. The goals are to standardize these terms and reach consensus regarding their definitions. In this way, we will increase the utility of descriptions of the human phenotype and facilitate reliable comparisons of findings among patients. Additional discussions with other workers in dysmorphology and related fields, such as developmental biology and molecular genetics, will become more precise. Here we introduce the anatomy of the trunk and limbs and define and illustrate the terms that describe the major characteristics of these body regions.


Asunto(s)
Extremidades , Antropometría , Consenso , Humanos , Fenotipo
9.
Am J Hum Genet ; 102(2): 309-320, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29394990

RESUMEN

Exome sequencing has markedly enhanced the discovery of genes implicated in Mendelian disorders, particularly for individuals in whom a known clinical entity could not be assigned. This has led to the recognition that phenotypic heterogeneity resulting from allelic mutations occurs more commonly than previously appreciated. Here, we report that missense variants in CDC42, a gene encoding a small GTPase functioning as an intracellular signaling node, underlie a clinically heterogeneous group of phenotypes characterized by variable growth dysregulation, facial dysmorphism, and neurodevelopmental, immunological, and hematological anomalies, including a phenotype resembling Noonan syndrome, a developmental disorder caused by dysregulated RAS signaling. In silico, in vitro, and in vivo analyses demonstrate that mutations variably perturb CDC42 function by altering the switch between the active and inactive states of the GTPase and/or affecting CDC42 interaction with effectors, and differentially disturb cellular and developmental processes. These findings reveal the remarkably variable impact that dominantly acting CDC42 mutations have on cell function and development, creating challenges in syndrome definition, and exemplify the importance of functional profiling for syndrome recognition and delineation.


Asunto(s)
Anomalías Múltiples/genética , Anomalías Craneofaciales/genética , Heterogeneidad Genética , Atrofia Muscular/genética , Mutación Missense , Trastornos del Neurodesarrollo/genética , Síndrome de Noonan/genética , Proteína de Unión al GTP cdc42/genética , Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Adolescente , Adulto , Niño , Preescolar , Anomalías Craneofaciales/metabolismo , Anomalías Craneofaciales/patología , Femenino , Expresión Génica , Humanos , Lactante , Masculino , Modelos Moleculares , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/patología , Síndrome de Noonan/metabolismo , Síndrome de Noonan/patología , Fenotipo , Estructura Secundaria de Proteína , Índice de Severidad de la Enfermedad , Proteína de Unión al GTP cdc42/química , Proteína de Unión al GTP cdc42/metabolismo
10.
Genet Med ; 23(1): 149-154, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32873933

RESUMEN

PURPOSE: Biallelic variants in TBC1D24, which encodes a protein that regulates vesicular transport, are frequently identified in patients with DOORS (deafness, onychodystrophy, osteodystrophy, intellectual disability [previously referred to as mental retardation], and seizures) syndrome. The aim of the study was to identify a genetic cause in families with DOORS syndrome and without a TBC1D24 variant. METHODS: Exome or Sanger sequencing was performed in individuals with a clinical diagnosis of DOORS syndrome without TBC1D24 variants. RESULTS: We identified the same truncating variant in ATP6V1B2 (NM_001693.4:c.1516C>T; p.Arg506*) in nine individuals from eight unrelated families with DOORS syndrome. This variant was already reported in individuals with dominant deafness onychodystrophy (DDOD) syndrome. Deafness was present in all individuals, along with onychodystrophy and abnormal fingers and/or toes. All families but one had developmental delay or intellectual disability and five individuals had epilepsy. We also describe two additional families with DDOD syndrome in whom the same variant was found. CONCLUSION: We expand the phenotype associated with ATP6V1B2 and propose another causal gene for DOORS syndrome. This finding suggests that DDOD and DOORS syndromes might lie on a spectrum of clinically and molecularly related conditions.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Uñas Malformadas , ATPasas de Translocación de Protón Vacuolares , Epilepsia/genética , Exoma , Proteínas Activadoras de GTPasa , Humanos , Discapacidad Intelectual/genética , Uñas Malformadas/genética , Fenotipo , ATPasas de Translocación de Protón Vacuolares/genética
11.
Am J Med Genet A ; 185(2): 324-335, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33141500

RESUMEN

One of the questions that arises frequently when caring for an individual with a malformation syndrome, is whether some form of tumor surveillance is indicated. In some syndromes there is a highly variable increased risk to develop tumors, while in others this is not the case. The risks can be hard to predict and difficult to explain to affected individuals and their families, and often also to caregivers. The queries arise especially if syndrome causing mutations are also known to occur in tumors. It needs insight in the mechanisms to understand and explain differences of tumor occurrence, and to offer optimal care to individuals with syndromes. Here we provide a short overview of the major mechanisms of the control for tumor occurrences in malformation syndromes.


Asunto(s)
Anomalías Múltiples/genética , Predisposición Genética a la Enfermedad , Neoplasias/genética , Anomalías Múltiples/patología , Humanos , Mutación/genética , Neoplasias/patología
13.
Hum Genet ; 139(5): 575-592, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32193685

RESUMEN

RAD21 encodes a key component of the cohesin complex, and variants in RAD21 have been associated with Cornelia de Lange Syndrome (CdLS). Limited information on phenotypes attributable to RAD21 variants and genotype-phenotype relationships is currently published. We gathered a series of 49 individuals from 33 families with RAD21 alterations [24 different intragenic sequence variants (2 recurrent), 7 unique microdeletions], including 24 hitherto unpublished cases. We evaluated consequences of 12 intragenic variants by protein modelling and molecular dynamic studies. Full clinical information was available for 29 individuals. Their phenotype is an attenuated CdLS phenotype compared to that caused by variants in NIPBL or SMC1A for facial morphology, limb anomalies, and especially for cognition and behavior. In the 20 individuals with limited clinical information, additional phenotypes include Mungan syndrome (in patients with biallelic variants) and holoprosencephaly, with or without CdLS characteristics. We describe several additional cases with phenotypes including sclerocornea, in which involvement of the RAD21 variant is uncertain. Variants were frequently familial, and genotype-phenotype analyses demonstrated striking interfamilial and intrafamilial variability. Careful phenotyping is essential in interpreting consequences of RAD21 variants, and protein modeling and dynamics can be helpful in determining pathogenicity. The current study should be helpful when counseling families with a RAD21 variation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Deleción Cromosómica , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/patología , Mutación , Adolescente , Adulto , Proteínas de Ciclo Celular/química , Niño , Preescolar , Proteínas de Unión al ADN/química , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Simulación de Dinámica Molecular , Fenotipo , Conformación Proteica , Adulto Joven
14.
Am J Hum Genet ; 101(5): 844-855, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29100094

RESUMEN

A series of simplex cases have been reported under various diagnoses sharing early aging, especially evident in congenitally decreased subcutaneous fat tissue and sparse hair, bone dysplasia of the skull and fingers, a distinctive facial gestalt, and prenatal and postnatal growth retardation. For historical reasons, we suggest naming the entity Fontaine syndrome. Exome sequencing of four unrelated affected individuals showed that all carried the de novo missense variant c.649C>T (p.Arg217Cys) or c.650G>A (p.Arg217His) in SLC25A24, a solute carrier 25 family member coding for calcium-binding mitochondrial carrier protein (SCaMC-1, also known as SLC25A24). SLC25A24 allows an electro-neutral and reversible exchange of ATP-Mg and phosphate between the cytosol and mitochondria, which is required for maintaining optimal adenine nucleotide levels in the mitochondrial matrix. Molecular dynamic simulation studies predict that p.Arg217Cys and p.Arg217His narrow the substrate cavity of the protein and disrupt transporter dynamics. SLC25A24-mutant fibroblasts and cells expressing p.Arg217Cys or p.Arg217His variants showed altered mitochondrial morphology, a decreased proliferation rate, increased mitochondrial membrane potential, and decreased ATP-linked mitochondrial oxygen consumption. The results suggest that the SLC25A24 mutations lead to impaired mitochondrial ATP synthesis and cause hyperpolarization and increased proton leak in association with an impaired energy metabolism. Our findings identify SLC25A24 mutations affecting codon 217 as the underlying genetic cause of human progeroid Fontaine syndrome.


Asunto(s)
Envejecimiento/genética , Antiportadores/genética , Enfermedades del Desarrollo Óseo/genética , Proteínas de Unión al Calcio/genética , Proteínas Mitocondriales/genética , Mutación/genética , Adenina/metabolismo , Adenosina Trifosfato/metabolismo , Citosol/metabolismo , Femenino , Muerte Fetal , Fibroblastos/metabolismo , Humanos , Lactante , Recién Nacido , Masculino , Potencial de la Membrana Mitocondrial/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Simulación de Dinámica Molecular , Oxígeno/metabolismo , Fosfatos/metabolismo , Síndrome
15.
Genet Med ; 22(11): 1838-1850, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32694869

RESUMEN

PURPOSE: Nontruncating variants in SMARCA2, encoding a catalytic subunit of SWI/SNF chromatin remodeling complex, cause Nicolaides-Baraitser syndrome (NCBRS), a condition with intellectual disability and multiple congenital anomalies. Other disorders due to SMARCA2 are unknown. METHODS: By next-generation sequencing, we identified candidate variants in SMARCA2 in 20 individuals from 18 families with a syndromic neurodevelopmental disorder not consistent with NCBRS. To stratify variant interpretation, we functionally analyzed SMARCA2 variants in yeasts and performed transcriptomic and genome methylation analyses on blood leukocytes. RESULTS: Of 20 individuals, 14 showed a recognizable phenotype with recurrent features including epicanthal folds, blepharophimosis, and downturned nasal tip along with variable degree of intellectual disability (or blepharophimosis intellectual disability syndrome [BIS]). In contrast to most NCBRS variants, all SMARCA2 variants associated with BIS are localized outside the helicase domains. Yeast phenotype assays differentiated NCBRS from non-NCBRS SMARCA2 variants. Transcriptomic and DNA methylation signatures differentiated NCBRS from BIS and those with nonspecific phenotype. In the remaining six individuals with nonspecific dysmorphic features, clinical and molecular data did not permit variant reclassification. CONCLUSION: We identified a novel recognizable syndrome named BIS associated with clustered de novo SMARCA2 variants outside the helicase domains, phenotypically and molecularly distinct from NCBRS.


Asunto(s)
Blefarofimosis , Hipotricosis , Discapacidad Intelectual , Facies , Deformidades Congénitas del Pie , Humanos , Discapacidad Intelectual/genética , Fenotipo , Factores de Transcripción/genética
16.
Clin Genet ; 97(6): 915-919, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32112393

RESUMEN

Variants in transcriptional activator Gli Kruppel Family Member 3 (GLI3) have been reported to be associated with several phenotypes including Greig cephalopolysyndactyly syndrome (MIM #175700), Pallister-Hall syndrome (PHS) (MIM #146510), postaxial polydactyly types A1 (PAPA1) and B (PAPB) (MIM #174200), and preaxial polydactyly type 4 (MIM #174700). All these disorders follow an autosomal dominant pattern of inheritance. Hypothalamic hamartomas (MIM 241800) is associated with somatic variants in GLI3. We report a related couple with parents having PAPA1 and PAPB, who had a fetus with a phenotype most compatible with PHS. Molecular analyses demonstrated homozygosity for a pathogenic GLI3 variant (c.1927C > T; p. Arg643*) in the fetus and heterozygosity in the parents. The genetic analysis in this family demonstrates that heterozygosity and homozygosity for the same GLI3 variant can cause a different phenotype. Furthermore, the occurrence of Pallister-Hall-like syndrome in a homozygous patient should be taken into account in genetic counseling of families with PAPA1/PAPB.


Asunto(s)
Anomalías Múltiples/genética , Dedos/anomalías , Proteínas del Tejido Nervioso/genética , Síndrome de Pallister-Hall/genética , Polidactilia/genética , Dedos del Pie/anomalías , Proteína Gli3 con Dedos de Zinc/genética , Anomalías Múltiples/diagnóstico por imagen , Anomalías Múltiples/patología , Feto Abortado/diagnóstico por imagen , Feto Abortado/patología , Adulto , Femenino , Dedos/diagnóstico por imagen , Dedos/patología , Heterocigoto , Homocigoto , Humanos , Masculino , Síndrome de Pallister-Hall/complicaciones , Síndrome de Pallister-Hall/diagnóstico por imagen , Síndrome de Pallister-Hall/patología , Linaje , Fenotipo , Polidactilia/complicaciones , Polidactilia/diagnóstico por imagen , Polidactilia/patología , Dedos del Pie/diagnóstico por imagen , Dedos del Pie/patología
17.
Clin Genet ; 97(6): 890-901, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32266967

RESUMEN

Primrose syndrome (PS; MIM# 259050) is characterized by intellectual disability (ID), macrocephaly, unusual facial features (frontal bossing, deeply set eyes, down-slanting palpebral fissures), calcified external ears, sparse body hair and distal muscle wasting. The syndrome is caused by de novo heterozygous missense variants in ZBTB20. Most of the 29 published patients are adults as characteristics appear more recognizable with age. We present 13 hitherto unpublished individuals and summarize the clinical and molecular findings in all 42 patients. Several signs and symptoms of PS develop during childhood, but the cardinal features, such as calcification of the external ears, cystic bone lesions, muscle wasting, and contractures typically develop between 10 and 16 years of age. Biochemically, anemia and increased alpha-fetoprotein levels are often present. Two adult males with PS developed a testicular tumor. Although PS should be regarded as a progressive entity, there are no indications that cognition becomes more impaired with age. No obvious genotype-phenotype correlation is present. A subgroup of patients with ZBTB20 variants may be associated with mild, nonspecific ID. Metabolic investigations suggest a disturbed mitochondrial fatty acid oxidation. We suggest a regular surveillance in all adult males with PS until it is clear whether or not there is a truly elevated risk of testicular cancer.


Asunto(s)
Anomalías Múltiples/genética , Calcinosis/genética , Enfermedades del Oído/genética , Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Megalencefalia/genética , Atrofia Muscular/genética , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética , 3-Hidroxiacil-CoA Deshidrogenasas/genética , Anomalías Múltiples/patología , Acetil-CoA C-Aciltransferasa/genética , Adolescente , Adulto , Calcinosis/patología , Isomerasas de Doble Vínculo Carbono-Carbono/genética , Niño , Preescolar , Enfermedades del Oído/patología , Enoil-CoA Hidratasa/genética , Cara/anomalías , Femenino , Estudios de Asociación Genética , Heterocigoto , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Megalencefalia/patología , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/patología , Atrofia Muscular/patología , Mutación , Mutación Missense/genética , Fenotipo , Racemasas y Epimerasas/genética , Neoplasias Testiculares , Adulto Joven
18.
Hum Mutat ; 40(12): 2270-2285, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31206972

RESUMEN

Pathogenic variants in the X-linked gene ZC4H2, which encodes a zinc-finger protein, cause an infrequently described syndromic form of arthrogryposis multiplex congenita (AMC) with central and peripheral nervous system involvement. We present genetic and detailed phenotypic information on 23 newly identified families and simplex cases that include 19 affected females from 18 families and 14 affected males from nine families. Of note, the 15 females with deleterious de novo ZC4H2 variants presented with phenotypes ranging from mild to severe, and their clinical features overlapped with those seen in affected males. By contrast, of the nine carrier females with inherited ZC4H2 missense variants that were deleterious in affected male relatives, four were symptomatic. We also compared clinical phenotypes with previously published cases of both sexes and provide an overview on 48 males and 57 females from 42 families. The spectrum of ZC4H2 defects comprises novel and recurrent mostly inherited missense variants in affected males, and de novo splicing, frameshift, nonsense, and partial ZC4H2 deletions in affected females. Pathogenicity of two newly identified missense variants was further supported by studies in zebrafish. We propose ZC4H2 as a good candidate for early genetic testing of males and females with a clinical suspicion of fetal hypo-/akinesia and/or (neurogenic) AMC.


Asunto(s)
Artrogriposis/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Proteínas Nucleares/genética , Animales , Codón sin Sentido , Modelos Animales de Enfermedad , Femenino , Mutación del Sistema de Lectura , Genes Ligados a X , Predisposición Genética a la Enfermedad , Humanos , Masculino , Mutación Missense , Linaje , Fenotipo , Eliminación de Secuencia , Caracteres Sexuales , Pez Cebra
19.
Am J Med Genet C Semin Med Genet ; 181(4): 611-626, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31730271

RESUMEN

The nuclear factor one (NFI) site-specific DNA-binding proteins represent a family of transcription factors that are important for the development of multiple organ systems, including the brain. During brain development in mice, the expression patterns of Nfia, Nfib, and Nfix overlap, and knockout mice for each of these exhibit overlapping brain defects, including megalencephaly, dysgenesis of the corpus callosum, and enlarged ventricles, which implies a common but not redundant function in brain development. In line with these models, human phenotypes caused by haploinsufficiency of NFIA, NFIB, and NFIX display significant overlap, sharing neurodevelopmental deficits, macrocephaly, brain anomalies, and variable somatic overgrowth. Other anomalies may be present depending on the NFI gene involved. The possibility of variants in NFI genes should therefore be considered in individuals with intellectual disability and brain overgrowth, with individual NFI-related conditions being differentiated from one another by additional signs and symptoms. The exception is provided by specific NFIX variants that act in a dominant negative manner, as these cause a recognizable entity with more severe cognitive impairment and marked bone dysplasia, Marshall-Smith syndrome. NFIX duplications are associated with a phenotype opposite to that of haploinsufficiency, characterized by short stature, small head circumference, and delayed bone age. The spectrum of NFI-related disorders will likely be further expanded, as larger cohorts are assessed.


Asunto(s)
Crecimiento/genética , Mutación , Factores de Transcripción NFI/genética , Anomalías Múltiples/genética , Animales , Enfermedades del Desarrollo Óseo/genética , Anomalías Craneofaciales/genética , Duplicación de Gen , Trastornos del Crecimiento/genética , Humanos , Ratones , Displasia Septo-Óptica/genética , Síndrome
20.
Am J Hum Genet ; 99(2): 392-406, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27426733

RESUMEN

Frontometaphyseal dysplasia (FMD) is a progressive sclerosing skeletal dysplasia affecting the long bones and skull. The cause of FMD in some individuals is gain-of-function mutations in FLNA, although how these mutations result in a hyperostotic phenotype remains unknown. Approximately one half of individuals with FMD have no identified mutation in FLNA and are phenotypically very similar to individuals with FLNA mutations, except for an increased tendency to form keloid scars. Using whole-exome sequencing and targeted Sanger sequencing in 19 FMD-affected individuals with no identifiable FLNA mutation, we identified mutations in two genes-MAP3K7, encoding transforming growth factor ß (TGF-ß)-activated kinase (TAK1), and TAB2, encoding TAK1-associated binding protein 2 (TAB2). Four mutations were found in MAP3K7, including one highly recurrent (n = 15) de novo mutation (c.1454C>T [ p.Pro485Leu]) proximal to the coiled-coil domain of TAK1 and three missense mutations affecting the kinase domain (c.208G>C [p.Glu70Gln], c.299T>A [p.Val100Glu], and c.502G>C [p.Gly168Arg]). Notably, the subjects with the latter three mutations had a milder FMD phenotype. An additional de novo mutation was found in TAB2 (c.1705G>A, p.Glu569Lys). The recurrent mutation does not destabilize TAK1, or impair its ability to homodimerize or bind TAB2, but it does increase TAK1 autophosphorylation and alter the activity of more than one signaling pathway regulated by the TAK1 kinase complex. These findings show that dysregulation of the TAK1 complex produces a close phenocopy of FMD caused by FLNA mutations. Furthermore, they suggest that the pathogenesis of some of the filaminopathies caused by FLNA mutations might be mediated by misregulation of signaling coordinated through the TAK1 signaling complex.


Asunto(s)
Frente/anomalías , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Mutación/genética , Osteocondrodisplasias/genética , Transducción de Señal/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Femenino , Filaminas/genética , Humanos , Sistema de Señalización de MAP Quinasas/genética , Masculino , FN-kappa B/metabolismo , Osteocondrodisplasias/metabolismo , Fosforilación , Unión Proteica , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA