RESUMEN
Although many prokaryotes have glycolysis alternatives, it's considered as the only energy-generating glucose catabolic pathway in eukaryotes. Here, we managed to create a hybrid-glycolysis yeast. Subsequently, we identified an inositol pyrophosphatase encoded by OCA5 that could regulate glycolysis and respiration by adjusting 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) levels. 5-InsP7 levels could regulate the expression of genes involved in glycolysis and respiration, representing a global mechanism that could sense ATP levels and regulate central carbon metabolism. The hybrid-glycolysis yeast did not produce ethanol during growth under excess glucose and could produce 2.68 g/L free fatty acids, which is the highest reported production in shake flask of Saccharomyces cerevisiae. This study demonstrated the significance of hybrid-glycolysis yeast and determined Oca5 as an inositol pyrophosphatase controlling the balance between glycolysis and respiration, which may shed light on the role of inositol pyrophosphates in regulating eukaryotic metabolism.
Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Difosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfatos de Inositol/genética , Fosfatos de Inositol/metabolismo , Glucólisis/genética , Respiración , Pirofosfatasas/metabolismo , Glucosa/metabolismoRESUMEN
How signaling dynamics encode information is a central question in biology. During vertebrate development, dynamic Notch signaling oscillations control segmentation of the presomitic mesoderm (PSM). In mouse embryos, this molecular clock comprises signaling oscillations of several pathways, i.e., Notch, Wnt, and FGF signaling. Here, we directly address the role of the relative timing between Wnt and Notch signaling oscillations during PSM patterning. To this end, we developed a new experimental strategy using microfluidics-based entrainment that enables specific control of the rhythm of segmentation clock oscillations. Using this approach, we find that Wnt and Notch signaling are coupled at the level of their oscillation dynamics. Furthermore, we provide functional evidence that the oscillation phase shift between Wnt and Notch signaling is critical for PSM segmentation. Our work hence reveals that dynamic signaling, i.e., the relative timing between oscillatory signals, encodes essential information during multicellular development.
Asunto(s)
Tipificación del Cuerpo , Mesodermo/embriología , Receptores Notch/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , Animales , Genes Reporteros , Mesodermo/metabolismo , Ratones , Microfluídica , Somitos/embriología , Somitos/metabolismoRESUMEN
Inositol pyrophosphates (PP-InsPs) are energetic signaling molecules with important functions in mammals. As their biosynthesis depends on ATP concentration, PP-InsPs are tightly connected to cellular energy homeostasis. Consequently, an increasing number of studies involve PP-InsPs in metabolic disorders, such as type 2 diabetes, aspects of tumorigenesis, and hyperphosphatemia. Research conducted in yeast suggests that the PP-InsP pathway is activated in response to reactive oxygen species (ROS). However, the precise modulation of PP-InsPs during cellular ROS signaling is unknown. Here, we report how mammalian PP-InsP levels are changing during exposure to exogenous (H2O2) and endogenous ROS. Using capillary electrophoresis electrospray ionization mass spectrometry (CE-ESI-MS), we found that PP-InsP levels decrease upon exposure to oxidative stressors in HCT116 cells. Application of quinone drugs, particularly ß-lapachone (ß-lap), under normoxic and hypoxic conditions enabled us to produce ROS in cellulo and to show that ß-lap treatment caused PP-InsP changes that are oxygen-dependent. Experiments in MDA-MB-231 breast cancer cells deficient of NAD(P)H:quinone oxidoreductase-1 (NQO1) demonstrated that ß-lap requires NQO1 bioactivation to regulate the cellular metabolism of PP-InsPs. Critically, significant reductions in cellular ATP concentrations were not directly mirrored in reduced PP-InsP levels as shown in NQO1-deficient MDA-MB-231 cells treated with ß-lap. The data presented here unveil unique aspects of ß-lap pharmacology and its impact on PP-InsP levels. The identification of different quinone drugs as modulators of PP-InsP synthesis will allow the overall impact on cellular function of such drugs to be better appreciated.
Asunto(s)
Diabetes Mellitus Tipo 2 , Naftoquinonas , Humanos , Adenosina Trifosfato , Línea Celular Tumoral , Difosfatos , Peróxido de Hidrógeno/metabolismo , Inositol , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Naftoquinonas/farmacología , Oxígeno , Especies Reactivas de Oxígeno/metabolismoRESUMEN
A fundamental requirement for embryonic development is the coordination of signaling activities in space and time. A notable example in vertebrate embryos is found during somitogenesis, where gene expression oscillations linked to the segmentation clock are synchronized across cells in the presomitic mesoderm (PSM) and result in tissue-level wave patterns. To examine their onset during mouse embryo development, we studied the dynamics of the segmentation clock gene Lfng during gastrulation. To this end, we established an imaging setup using selective plane illumination microscopy (SPIM) that enables culture and simultaneous imaging of up to four embryos ('SPIM- for-4'). Using SPIM-for-4, combined with genetically encoded signaling reporters, we detected the onset of Lfng oscillations within newly formed mesoderm at presomite stages. Functionally, we found that initial synchrony and the first â¼6-8 oscillation cycles occurred even when Notch signaling was impaired, revealing similarities to previous findings made in zebrafish embryos. Finally, we show that a spatial period gradient is present at the onset of oscillatory activity, providing a potential mechanism accounting for our observation that wave patterns build up gradually over the first oscillation cycles.
Asunto(s)
Gastrulación , Somitos , Animales , Regulación del Desarrollo de la Expresión Génica , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Mesodermo/metabolismo , Ratones , Receptores Notch/genética , Receptores Notch/metabolismo , Somitos/metabolismo , Pez Cebra/genéticaRESUMEN
Land plants have evolved sophisticated sensing mechanisms and signalling pathways to adapt to phosphate-limited environments. While molecular players contributing to these adaptations in flowering plants have been described, how non-vascular bryophytes regulate phosphate (Pi) homeostasis remained largely unknown. In this study, we present findings that both male and female plants of the liverwort Marchantia polymorpha respond to altered phosphate availability through substantial developmental changes. We show that the second messenger inositol pyrophosphates (PP-InsPs) respond more quickly to changes in cellular Pi status than the lower inositol phosphates, highlighting a functional relationship between PP-InsP and Pi homeostasis in M. polymorpha. To further corroborate the possible involvement of PP-InsP in Pi homeostasis, we characterized M. polymorpha INOSITOL (1,3,4) TRIPHOSPHATE 5/6 KINASE1 (MpITPK1) that phosphorylates InsP6 to generate InsP7 both in vitro and in vivo. Consistent with the role of PP-InsPs in Pi homeostasis, M. polymorpha lines with enhanced MpITPK1 expression leading to the accumulation of 5-InsP7 and an InsP8 isomer exhibit altered expression of phosphate starvation induced (PSI) genes and display attenuated responses to low phosphate. The characterization of MpPHO1-deficient plants with dramatically increased levels of 1,5-InsP8 further supports the role of PP-InsP in Pi homeostasis in this liverwort species. Notably, our study unveiled that MpITPK1 rescues the deregulated Pi homeostasis in Arabidopsis (Arabidopsis thaliana) ITPK1-deficient plants, suggesting that liverwort and eudicots share a functional ITPK1 homolog. In summary, our study provides insights into the regulation of Pi homeostasis by ITPK1-derived PP-InsPs in M. polymorpha.
RESUMEN
CDS enzymes (CDS1 and 2 in mammals) convert phosphatidic acid (PA) to CDP-DG, an essential intermediate in the de novo synthesis of PI. Genetic deletion of CDS2 in primary mouse macrophages resulted in only modest changes in the steady-state levels of major phospholipid species, including PI, but substantial increases in several species of PA, CDP-DG, DG and TG. Stable isotope labelling experiments employing both 13C6- and 13C6D7-glucose revealed loss of CDS2 resulted in a minimal reduction in the rate of de novo PI synthesis but a substantial increase in the rate of de novo PA synthesis from G3P, derived from DHAP via glycolysis. This increased synthesis of PA provides a potential explanation for normal basal PI synthesis in the face of reduced CDS capacity (via increased provision of substrate to CDS1) and increased synthesis of DG and TG (via increased provision of substrate to LIPINs). However, under conditions of sustained GPCR-stimulation of PLC, CDS2-deficient macrophages were unable to maintain enhanced rates of PI synthesis via the 'PI cycle', leading to a substantial loss of PI. CDS2-deficient macrophages also exhibited significant defects in calcium homeostasis which were unrelated to the activation of PLC and thus probably an indirect effect of increased basal PA. These experiments reveal that an important homeostatic response in mammalian cells to a reduction in CDS capacity is increased de novo synthesis of PA, likely related to maintaining normal levels of PI, and provides a new interpretation of previous work describing pleiotropic effects of CDS2 deletion on lipid metabolism/signalling.
Asunto(s)
Macrófagos , Ácidos Fosfatidicos , Animales , Ácidos Fosfatidicos/metabolismo , Ácidos Fosfatidicos/biosíntesis , Ratones , Macrófagos/metabolismo , Ratones Noqueados , Diacilglicerol Colinafosfotransferasa/metabolismo , Diacilglicerol Colinafosfotransferasa/genética , Ratones Endogámicos C57BL , Calcio/metabolismoRESUMEN
SIGNIFICANCE STATEMENT: Kidneys are gatekeepers of systemic inorganic phosphate balance because they control urinary phosphate excretion. In yeast and plants, inositol hexakisphosphate kinases (IP6Ks) are central to regulate phosphate metabolism, whereas their role in mammalian phosphate homeostasis is mostly unknown. We demonstrate in a renal cell line and in mice that Ip6k1 and Ip6k2 are critical for normal expression and function of the major renal Na + /Pi transporters NaPi-IIa and NaPi-IIc. Moreover, Ip6k1/2-/- mice also show symptoms of more generalized kidney dysfunction. Thus, our results suggest that IP6Ks are essential for phosphate metabolism and proper kidney function in mammals. BACKGROUND: Inorganic phosphate is an essential mineral, and its plasma levels are tightly regulated. In mammals, kidneys are critical for maintaining phosphate homeostasis through mechanisms that ultimately regulate the expression of the Na + /Pi cotransporters NaPi-IIa and NaPi-IIc in proximal tubules. Inositol pyrophosphate 5-IP 7 , generated by IP6Ks, is a main regulator of phosphate metabolism in yeast and plants. IP6Ks are conserved in mammals, but their role in phosphate metabolism in vivo remains unexplored. METHODS: We used in vitro (opossum kidney cells) and in vivo (renal tubular-specific Ip6k1/2-/- mice) models to analyze the role of IP6K1/2 in phosphate homeostasis in mammals. RESULTS: In both systems, Ip6k1 and Ip6k2 are responsible for synthesis of 5-IP 7 . Depletion of Ip6k1/2 in vitro reduced phosphate transport and mRNA expression of Na + /Pi cotransporters, and it blunts phosphate transport adaptation to changes in ambient phosphate. Renal ablation of both kinases in mice also downregulates the expression of NaPi-IIa and NaPi-IIc and lowered the uptake of phosphate into proximal renal brush border membranes. In addition, the absence of Ip6k1 and Ip6k2 reduced the plasma concentration of fibroblast growth factor 23 and increased bone resorption, despite of which homozygous males develop hypophosphatemia. Ip6k1/2-/- mice also show increased diuresis, albuminuria, and hypercalciuria, although the morphology of glomeruli and proximal brush border membrane seemed unaffected. CONCLUSIONS: Depletion of renal Ip6k1/2 in mice not only altered phosphate homeostasis but also dysregulated other kidney functions.
Asunto(s)
Túbulos Renales , Fosfotransferasas (Aceptor del Grupo Fosfato) , Animales , Masculino , Ratones , Riñón/metabolismo , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Túbulos Renales/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismoRESUMEN
Inositol pyrophosphates (PP-InsPs) are eukaryote-specific second messengers that regulate diverse cellular processes, including immunity, nutrient sensing, and hormone signaling pathways in plants. These energy-rich messengers exhibit high sensitivity to the cellular phosphate status, suggesting that the synthesis and degradation of PP-InsPs are tightly controlled within the cells. Notably, the molecular basis of PP-InsP hydrolysis in plants remains largely unexplored. In this study, we report the functional characterization of MpDDP1, a diadenosine and diphosphoinositol polyphosphate phosphohydrolase encoded by the genome of the liverwort, Marchantia polymorpha. We show that MpDDP1 functions as a PP-InsP phosphohydrolase in different heterologous organisms. Consistent with this finding, M. polymorpha plants defective in MpDDP1 exhibit elevated levels of 1/3-InsP7 and 1/3,5-InsP8, highlighting the contribution of MpDDP1 in regulating PP-InsP homeostasis in planta. Furthermore, our study reveals that MpDDP1 controls thallus development and vegetative reproduction in M. polymorpha. Collectively, this study provides insights into the regulation of specific PP-InsP messengers by DDP1-type phosphohydrolases in land plants.
RESUMEN
Inositol pyrophosphates regulate diverse physiological processes; to better understand their functional roles, assessing their tissue-specific distribution is important. Here, we profiled inositol pyrophosphate levels in mammalian organs using an originally designed liquid chromatography-mass spectrometry (LC-MS) protocol and discovered that the gastrointestinal tract (GIT) contained the highest levels of diphosphoinositol pentakisphosphate (IP7) and its precursor inositol hexakisphosphate (IP6). Although their absolute levels in the GIT are diet dependent, elevated IP7 metabolism still exists under dietary regimens devoid of exogenous IP7. Of the major GIT cells, enteric neurons selectively express the IP7-synthesizing enzyme IP6K2. We found that IP6K2-knockout mice exhibited significantly impaired IP7 metabolism in the various organs including the proximal GIT. In addition, our LC-MS analysis displayed that genetic ablation of IP6K2 significantly impaired IP7 metabolism in the gut and duodenal muscularis externa containing myenteric plexus. Whole transcriptome analysis of duodenal muscularis externa further suggested that IP6K2 inhibition significantly altered expression levels of the gene sets associated with mature neurons, neural progenitor/stem cells, and glial cells, as well as of certain genes modulating neuronal differentiation and functioning, implying critical roles of the IP6K2-IP7 axis in developmental and functional regulation of the enteric nervous system. These results collectively reveal an unexpected role of mammalian IP7-a highly active IP6K2-IP7 pathway is conducive to the enteric nervous system.
Asunto(s)
Sistema Nervioso Entérico , Fosfatos de Inositol , Transcriptoma , Animales , Ratones , Difosfatos/análisis , Difosfatos/metabolismo , Sistema Nervioso Entérico/crecimiento & desarrollo , Sistema Nervioso Entérico/metabolismo , Fosfatos de Inositol/análisis , Fosfatos de Inositol/metabolismo , Ratones Noqueados , Neuronas/enzimología , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Ácido Fítico/metabolismo , Tracto Gastrointestinal/metabolismoRESUMEN
Magic spot nucleotides (p)ppGpp are important signaling molecules in bacteria and plants. In the latter, RelA-SpoT homologue (RSH) enzymes are responsible for (p)ppGpp turnover. Profiling of (p)ppGpp is more difficult in plants than in bacteria due to lower concentrations and more severe matrix effects. Here, we report that capillary electrophoresis mass spectrometry (CE-MS) can be deployed to study (p)ppGpp abundance and identity in Arabidopsis thaliana. This goal is achieved by combining a titanium dioxide extraction protocol and pre-spiking with chemically synthesized stable isotope-labeled internal reference compounds. The high sensitivity and separation efficiency of CE-MS enables monitoring of changes in (p)ppGpp levels in A. thaliana upon infection with the pathogen Pseudomonas syringae pv. tomato (PstDC3000). We observed a significant increase of ppGpp post infection that is also stimulated by the flagellin peptide flg22 only. This increase depends on functional flg22 receptor FLS2 and its interacting kinase BAK1 indicating that pathogen-associated molecular pattern (PAMP) receptor-mediated signaling controls ppGpp levels. Transcript analyses showed an upregulation of RSH2 upon flg22 treatment and both RSH2 and RSH3 after PstDC3000 infection. Arabidopsis mutants deficient in RSH2 and RSH3 activity display no ppGpp accumulation upon infection and flg22 treatment, supporting the involvement of these synthases in PAMP-triggered innate immune responses to pathogens within the chloroplast.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Guanosina Pentafosfato , Proteínas de Arabidopsis/metabolismo , Transducción de Señal , Plantas , Cloroplastos/metabolismoRESUMEN
Nature chose phosphates to activate amino acids, where reactive intermediates and complex machinery drive the construction of polyamides. Outside of biology, the pathways and mechanisms that allow spontaneous and selective peptide elongation in aqueous abiotic systems remain unclear. Herein we work to uncover those pathways by following the systems chemistry of aminoacyl phosphate esters, synthetic counterparts of aminoacyl adenylates. The phosphate esters act as solubility tags, making hydrophobic amino acids and their oligomers soluble in water and enabling selective elongation and different pathways to emerge. Thus, oligomers up to dodecamers were synthesized in one flask and on the minute time scale, where consecutive additions activated autonomous phase changes. Depending on the pathway, the resulting phases initially carry nonpolar peptides and amphiphilic oligomers containing phosphate esters. During elongation and phosphate release, shorter oligomers dominate in solution, while the aggregated phase favors the presence of longer oligomers due to their self-assembly propensity. Furthermore we demonstrated that the solution phases can be isolated and act as a new environment for continuous elongation, by adding various phosphate esters. These findings suggest that the systems chemistry of aminoacyl phosphate esters can activate a selection mechanism for peptide bond formation by merging aqueous synthesis and self-assembly.
Asunto(s)
Péptidos , Agua , Agua/química , Péptidos/química , Organofosfatos , Aminoácidos/química , Fosfatos/química , ÉsteresRESUMEN
S-Adenosylmethionine (SAM) is an enzyme cofactor involved in methylation, aminopropyl transfer, and radical reactions. This versatility renders SAM-dependent enzymes of great interest in biocatalysis. The usage of SAM analogues adds to this diversity. However, high cost and instability of the cofactor impedes the investigation and usage of these enzymes. While SAM regeneration protocols from the methyltransferase (MT) byproduct S-adenosylhomocysteine are available, aminopropyl transferases and radical SAM enzymes are not covered. Here, we report a set of efficient one-pot systems to supply or regenerate SAM and SAM analogues for all three enzyme classes. The systems' flexibility is showcased by the transfer of an ethyl group with a cobalamin-dependent radical SAM MT using S-adenosylethionine as a cofactor. This shows the potential of SAM (analogue) supply and regeneration for the application of diverse chemistry, as well as for mechanistic studies using cofactor analogues.
Asunto(s)
Biomimética , S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , Biocatálisis , Alquilación , Metilación , Metiltransferasas/metabolismoRESUMEN
The combinatorial phosphorylation of myo-inositol results in the generation of different inositol phosphates (InsPs), of which phytic acid (InsP6) is the most abundant species in eukaryotes. InsP6 is also an important precursor of the higher phosphorylated inositol pyrophosphates (PP-InsPs), such as InsP7 and InsP8, which are characterized by a diphosphate moiety and are also ubiquitously found in eukaryotic cells. While PP-InsPs regulate various cellular processes in animals and yeast, their biosynthesis and functions in plants has remained largely elusive because plant genomes do not encode canonical InsP6 kinases. Recent work has shown that Arabidopsis (Arabidopsis thaliana) INOSITOL (1,3,4) TRIPHOSPHATE 5/6 KINASE1 (ITPK1) and ITPK2 display in vitro InsP6 kinase activity and that, in planta, ITPK1 stimulates 5-InsP7 and InsP8 synthesis and regulates phosphate starvation responses. Here we report a critical role of ITPK1 in auxin-related processes that is independent of the ITPK1-controlled regulation of phosphate starvation responses. Those processes include primary root elongation, root hair development, leaf venation, thermomorphogenic and gravitropic responses, and sensitivity to exogenously applied auxin. We found that the recombinant auxin receptor complex, consisting of the F-Box protein TRANSPORT INHIBITOR RESPONSE1 (TIR1), ARABIDOPSIS SKP1 HOMOLOG 1 (ASK1), and the transcriptional repressor INDOLE-3-ACETIC ACID INDUCIBLE 7 (IAA7), binds to anionic inositol polyphosphates with high affinity. We further identified a physical interaction between ITPK1 and TIR1, suggesting a localized production of 5-InsP7, or another ITPK1-dependent InsP/PP-InsP isomer, to activate the auxin receptor complex. Finally, we demonstrate that ITPK1 and ITPK2 function redundantly to control auxin responses, as deduced from the auxin-insensitive phenotypes of itpk1 itpk2 double mutant plants. Our findings expand the mechanistic understanding of auxin perception and suggest that distinct inositol polyphosphates generated near auxin receptors help to fine-tune auxin sensitivity in plants.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fosfotransferasas (Aceptor de Grupo Alcohol) , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Fosfatos de Inositol/metabolismo , Plantas/metabolismo , Polifosfatos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismoRESUMEN
Studies into the biology of condensed phosphates almost exclusively cover linear polyphosphates. However, there is evidence for the presence of cyclic polyphosphates (metaphosphates) in organisms and for enzymatic digestion of branched phosphates (ultraphosphates) with alkaline phosphatase. Further research of non-linear condensed phosphates in biology would profit from interactome data of such molecules, however, their stability in biological media is limited. Here we present syntheses of modified, non-hydrolysable analogues of cyclic and branched condensed phosphates, called meta- and ultraphosphonates, and their application in a chemical proteomics approach using yeast cell extracts. We identify putative interactors with overlapping hits for structurally related capture compounds underlining the quality of our results. The datasets serve as starting point to study the biological relevance and functions of meta- and ultraphosphates. In addition, we examine the reactivity of meta- and ultraphosphonates with implications for their "hydrolysable" analogues: Efforts to increase the ring-sizes of meta- or cyclic ultraphosphonates revealed a strong preference to form trimetaphosphate-analogue structures by cyclization and/or ring-contraction. Using carbodiimides for condensation, the so far inaccessible dianhydro product of ultraphosphonate, corresponding to P4 O11 2- , was selectively obtained and then ring-opened by different nucleophiles yielding modified cyclic ultraphosphonates.
Asunto(s)
Fosfatos , Proteómica , Fosfatos/química , Polifosfatos/química , QuímicaRESUMEN
Homeostasis of cellular fluxes of inorganic phosphate (Pi) supervises its structural roles in bones and teeth, its pervasive regulation of cellular metabolism, and its functionalization of numerous organic compounds. Cellular Pi efflux is heavily reliant on Xenotropic and Polytropic Retrovirus Receptor 1 (XPR1), regulation of which is largely unknown. We demonstrate specificity of XPR1 regulation by a comparatively uncharacterized member of the inositol pyrophosphate (PP-InsP) signaling family: 1,5-bis-diphosphoinositol 2,3,4,6-tetrakisphosphate (InsP8). XPR1-mediated Pi efflux was inhibited by reducing cellular InsP8 synthesis, either genetically (knockout [KO] of diphosphoinositol pentakisphosphate kinases [PPIP5Ks] that synthesize InsP8) or pharmacologically [cell treatment with 2.5 µM dietary flavonoid or 10 µM N2-(m-trifluorobenzyl), N6-(p-nitrobenzyl) purine], to inhibit inositol hexakisphosphate kinases upstream of PPIP5Ks. Attenuated Pi efflux from PPIP5K KO cells was quantitatively phenocopied by KO of XPR1 itself. Moreover, Pi efflux from PPIP5K KO cells was rescued by restoration of InsP8 levels through transfection of wild-type PPIP5K1; transfection of kinase-dead PPIP5K1 was ineffective. Pi efflux was also rescued in a dose-dependent manner by liposomal delivery of a metabolically resistant methylene bisphosphonate (PCP) analog of InsP8; PCP analogs of other PP-InsP signaling molecules were ineffective. High-affinity binding of InsP8 to the XPR1 N-terminus (Kd = 180 nM) was demonstrated by isothermal titration calorimetry. To derive a cellular biology perspective, we studied biomineralization in the Soas-2 osteosarcoma cell line. KO of PPIP5Ks or XPR1 strongly reduced Pi efflux and accelerated differentiation to the mineralization end point. We propose that catalytically compromising PPIP5K mutations might extend an epistatic repertoire for XPR1 dysregulation, with pathological consequences for bone maintenance and ectopic calcification.
Asunto(s)
Fosfatos de Fosfatidilinositol/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Virales/metabolismo , Transporte Biológico , Células HEK293 , Humanos , Fosfatos/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Virales/genética , Transducción de Señal , Receptor de Retrovirus Xenotrópico y PolitrópicoRESUMEN
Regulation of enzymatic 5' decapping of messenger RNA (mRNA), which normally commits transcripts to their destruction, has the capacity to dynamically reshape the transcriptome. For example, protection from 5' decapping promotes accumulation of mRNAs into processing (P) bodies-membraneless, biomolecular condensates. Such compartmentalization of mRNAs temporarily removes them from the translatable pool; these repressed transcripts are stabilized and stored until P-body dissolution permits transcript reentry into the cytosol. Here, we describe regulation of mRNA stability and P-body dynamics by the inositol pyrophosphate signaling molecule 5-InsP7 (5-diphosphoinositol pentakisphosphate). First, we demonstrate 5-InsP7 inhibits decapping by recombinant NUDT3 (Nudix [nucleoside diphosphate linked moiety X]-type hydrolase 3) in vitro. Next, in intact HEK293 and HCT116 cells, we monitored the stability of a cadre of NUDT3 mRNA substrates following CRISPR-Cas9 knockout of PPIP5Ks (diphosphoinositol pentakisphosphate 5-kinases type 1 and 2, i.e., PPIP5K KO), which elevates cellular 5-InsP7 levels by two- to threefold (i.e., within the physiological rheostatic range). The PPIP5K KO cells exhibited elevated levels of NUDT3 mRNA substrates and increased P-body abundance. Pharmacological and genetic attenuation of 5-InsP7 synthesis in the KO background reverted both NUDT3 mRNA substrate levels and P-body counts to those of wild-type cells. Furthermore, liposomal delivery of a metabolically resistant 5-InsP7 analog into wild-type cells elevated levels of NUDT3 mRNA substrates and raised P-body abundance. In the context that cellular 5-InsP7 levels normally fluctuate in response to changes in the bioenergetic environment, regulation of mRNA structure by this inositol pyrophosphate represents an epitranscriptomic control process. The associated impact on P-body dynamics has relevance to regulation of stem cell differentiation, stress responses, and, potentially, amelioration of neurodegenerative diseases and aging.
Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , Fosfatos de Inositol/metabolismo , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Ácido Anhídrido Hidrolasas/genética , Células HEK293 , Humanos , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Caperuzas de ARN/genética , Estabilidad del ARN , ARN Mensajero/genéticaRESUMEN
Metabolic magnetic resonance imaging (MRI) using hyperpolarized (HP) pyruvate is becoming a non-invasive technique for diagnosing, staging, and monitoring response to treatment in cancer and other diseases. The clinically established method for producing HP pyruvate, dissolution dynamic nuclear polarization, however, is rather complex and slow. Signal Amplification By Reversible Exchange (SABRE) is an ultra-fast and low-cost method based on fast chemical exchange. Here, for the first time, we demonstrate not only in vivo utility, but also metabolic MRI with SABRE. We present a novel routine to produce aqueous HP [1-13 C]pyruvate-d3 for injection in 6â minutes. The injected solution was sterile, non-toxic, pH neutral and contained ≈30â mM [1-13 C]pyruvate-d3 polarized to ≈11 % (residual 250â mM methanol and 20â µM catalyst). It was obtained by rapid solvent evaporation and metal filtering, which we detail in this manuscript. This achievement makes HP pyruvate MRI available to a wide biomedical community for fast metabolic imaging of living organisms.
Asunto(s)
Imagen por Resonancia Magnética , Ácido Pirúvico , Imagen por Resonancia Magnética/métodos , Solventes/química , Metanol , Agua/químicaRESUMEN
Inositol pyrophosphates are signaling molecules containing at least one phosphoanhydride bond that regulate a wide range of cellular processes in eukaryotes. With a cyclic array of phosphate esters and diphosphate groups around myo-inositol, these molecular messengers possess the highest charge density found in nature. Recent work deciphering inositol pyrophosphate biosynthesis in Arabidopsis revealed important functions of these messengers in nutrient sensing, hormone signaling, and plant immunity. However, despite the rapid hydrolysis of these molecules in plant extracts, very little is known about the molecular identity of the phosphohydrolases that convert these messengers back to their inositol polyphosphate precursors. Here, we investigate whether Arabidopsis Plant and Fungi Atypical Dual Specificity Phosphatases (PFA-DSP1-5) catalyze inositol pyrophosphate phosphohydrolase activity. We find that recombinant proteins of all five Arabidopsis PFA-DSP homologues display phosphohydrolase activity with a high specificity for the 5-ß-phosphate of inositol pyrophosphates and only minor activity against the ß-phosphates of 4-InsP7 and 6-InsP7. We further show that heterologous expression of Arabidopsis PFA-DSP1-5 rescues wortmannin sensitivity and deranged inositol pyrophosphate homeostasis caused by the deficiency of the PFA-DSP-type inositol pyrophosphate phosphohydrolase Siw14 in yeast. Heterologous expression in Nicotiana benthamiana leaves provided evidence that Arabidopsis PFA-DSP1 also displays 5-ß-phosphate-specific inositol pyrophosphate phosphohydrolase activity in planta. Our findings lay the biochemical basis and provide the genetic tools to uncover the roles of inositol pyrophosphates in plant physiology and plant development.
Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Difosfatos/metabolismo , Fosfatasas de Especificidad Dual/metabolismo , Fosfatos de Inositol/metabolismo , Saccharomyces cerevisiae/metabolismoRESUMEN
Oligophosphates play essential roles in biochemistry, and considerable research has been directed toward the synthesis of both naturally occurring oligophosphates and their synthetic analogues. Greater attention has been given to mono-, di-, and triphosphates, as these are present in higher concentrations biologically and easier to synthesize. However, extended oligophosphates have potent biochemical roles, ranging from blood coagulation to HIV drug resistance. Sporadic reports have slowly built a niche body of literature related to the synthesis and study of extended oligophosphates, but newfound interests and developments have the potential to rapidly expand this field. Here we report on current methods to synthesize oligophosphates longer than triphosphates and comment on the most important future directions for this area of research. The state of the art has provided fairly robust methods for synthesizing nucleoside 5'-tetra- and pentaphosphates as well as dinucleoside 5',5'-oligophosphates. Future research should endeavor to push such syntheses to longer oligophosphates while developing synthetic methodologies for rarer morphologies such as 3'-nucleoside oligophosphates, polyphosphates, and phosphonate/thiophosphate analogues of these species.
Asunto(s)
Nucleósidos , Organofosfonatos , Indicadores y Reactivos , PolifosfatosRESUMEN
Surface patterning of functional materials is a key technology in various fields such as microelectronics, optics, and photonics. In micro- and nanofabrication, polymers are frequently employed either as photoreactive or thermoresponsive resists that enable further fabrication steps, or as functional adlayers in electronic and optical devices. In this article, a method is presented for imprint lithography using low molecular weight arylazoisoxazoles photoswitches instead of polymer resists. These photoswitches exhibit a rapid and reversible solid-to-liquid phase transition upon photo-isomerization at room temperature, making them highly suitable for reversible surface functionalization at ambient conditions. Beyond photo-induced imprint lithography with multiple write-and-erase cycles, prospective applications as patterned matrix for nanoparticles and etch resist on gold surfaces are demonstrated.