Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Blood ; 138(14): 1258-1268, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34077951

RESUMEN

Hemophilia A is a bleeding disorder resulting from deficient factor VIII (FVIII), which normally functions as a cofactor to activated factor IX (FIXa) that facilitates activation of factor X (FX). To mimic this property in a bispecific antibody format, a screening was conducted to identify functional pairs of anti-FIXa and anti-FX antibodies, followed by optimization of functional and biophysical properties. The resulting bispecific antibody (Mim8) assembled efficiently with FIXa and FX on membranes, and supported activation with an apparent equilibrium dissociation constant of 16 nM. Binding affinity with FIXa and FX in solution was much lower, with equilibrium dissociation constant values for FIXa and FX of 2.3 and 1.5 µM, respectively. In addition, the activity of Mim8 was dependent on stimulatory activity contributed by the anti-FIXa arm, which enhanced the proteolytic activity of FIXa by 4 orders of magnitude. In hemophilia A plasma and whole blood, Mim8 normalized thrombin generation and clot formation, with potencies 13 and 18 times higher than a sequence-identical analogue of emicizumab. A similar potency difference was observed in a tail vein transection model in hemophilia A mice, whereas reduction of bleeding in a severe tail-clip model was observed only for Mim8. Furthermore, the pharmacokinetic parameters of Mim8 were investigated and a half-life of 14 days shown in cynomolgus monkeys. In conclusion, Mim8 is an activated FVIII mimetic with a potent and efficacious hemostatic effect based on preclinical data.


Asunto(s)
Anticuerpos Biespecíficos/uso terapéutico , Hemofilia A/tratamiento farmacológico , Hemorragia/tratamiento farmacológico , Animales , Factor IXa/antagonistas & inhibidores , Factor VIIIa/uso terapéutico , Factor X/antagonistas & inhibidores , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL
2.
Biochim Biophys Acta ; 1864(8): 974-82, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26876537

RESUMEN

Thioredoxins are nearly ubiquitous disulfide reductases involved in a wide range of biochemical pathways in various biological systems, and also implicated in numerous biotechnological applications. Plants uniquely synthesize an array of thioredoxins targeted to different cell compartments, for example chloroplastic f- and m-type thioredoxins involved in regulation of the Calvin-Benson cycle. The cytosolic h-type thioredoxins act as key regulators of seed germination and are recycled by NADPH-dependent thioredoxin reductase. The present review on thioredoxin h systems in plant seeds focuses on occurrence, reaction mechanisms, specificity, target protein identification, three-dimensional structure and various applications. The aim is to provide a general background as well as an update covering the most recent findings. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.


Asunto(s)
Germinación/fisiología , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Semillas/metabolismo , Tiorredoxina h/metabolismo , NADP/metabolismo , Oxidación-Reducción , Reductasa de Tiorredoxina-Disulfuro/metabolismo
3.
Cell Mol Life Sci ; 73(14): 2619-41, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27137180

RESUMEN

α-Glucan debranching enzymes hydrolyse α-1,6-linkages in starch/glycogen, thereby, playing a central role in energy metabolism in all living organisms. They belong to glycoside hydrolase families GH13 and GH57 and several of these enzymes are industrially important. Nine GH13 subfamilies include α-glucan debranching enzymes; isoamylase and glycogen debranching enzymes (GH13_11); pullulanase type I/limit dextrinase (GH13_12-14); pullulan hydrolase (GH13_20); bifunctional glycogen debranching enzyme (GH13_25); oligo-1 and glucan-1,6-α-glucosidases (GH13_31); pullulanase type II (GH13_39); and α-amylase domains (GH13_41) in two-domain amylase-pullulanases. GH57 harbours type II pullulanases. Specificity differences, domain organisation, carbohydrate binding modules, sequence motifs, three-dimensional structures and specificity determinants are discussed. The phylogenetic analysis indicated that GH13_39 enzymes could represent a "missing link" between the strictly α-1,6-specific debranching enzymes and the enzymes with dual specificity and α-1,4-linkage preference.


Asunto(s)
Glucanos/metabolismo , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Glucógeno/metabolismo , Industrias , Homología Estructural de Proteína
4.
J Biol Chem ; 290(20): 12614-29, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25792743

RESUMEN

Molecular details underlying regulation of starch mobilization in cereal seed endosperm remain unknown despite the paramount role of this process in plant growth. The structure of the complex between the starch debranching enzyme barley limit dextrinase (LD), hydrolyzing α-1,6-glucosidic linkages, and its endogenous inhibitor (LDI) was solved at 2.7 Å. The structure reveals an entirely new and unexpected binding mode of LDI as compared with previously solved complex structures of related cereal type family inhibitors (CTIs) bound to glycoside hydrolases but is structurally analogous to binding of dual specificity CTIs to proteases. Site-directed mutagenesis establishes that a hydrophobic cluster flanked by ionic interactions in the protein-protein interface is vital for the picomolar affinity of LDI to LD as assessed by analysis of binding by using surface plasmon resonance and also supported by LDI inhibition of the enzyme activity. A phylogenetic analysis identified four LDI-like proteins in cereals among the 45 sequences from monocot databases that could be classified as unique CTI sequences. The unprecedented binding mechanism shown here for LDI has likely evolved in cereals from a need for effective inhibition of debranching enzymes having characteristic open active site architecture. The findings give a mechanistic rationale for the potency of LD activity regulation and provide a molecular understanding of the debranching events associated with optimal starch mobilization and utilization during germination. This study unveils a hitherto not recognized structural basis for the features endowing diversity to CTIs.


Asunto(s)
Inhibidores Enzimáticos/química , Glicósido Hidrolasas/química , Hordeum/enzimología , Proteínas de Plantas/química , Dominio Catalítico , Cristalografía por Rayos X , Inhibidores Enzimáticos/metabolismo , Germinación/fisiología , Glicósido Hidrolasas/antagonistas & inhibidores , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Hordeum/genética , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Almidón/química , Almidón/genética , Almidón/metabolismo , Relación Estructura-Actividad
5.
J Biol Chem ; 289(33): 22991-23003, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24993830

RESUMEN

The starch debranching enzymes isoamylase 1 and 2 (ISA1 and ISA2) are known to exist in a large complex and are involved in the biosynthesis and crystallization of starch. It is suggested that the function of the complex is to remove misplaced branches of growing amylopectin molecules, which would otherwise prevent the association and crystallization of adjacent linear chains. Here, we investigate the function of ISA1 and ISA2 from starch producing alga Chlamydomonas. Through complementation studies, we confirm that the STA8 locus encodes for ISA2 and sta8 mutants lack the ISA1·ISA2 heteromeric complex. However, mutants retain a functional dimeric ISA1 that is able to partly sustain starch synthesis in vivo. To better characterize ISA1, we have overexpressed and purified ISA1 from Chlamydomonas reinhardtii (CrISA1) and solved the crystal structure to 2.3 Å and in complex with maltoheptaose to 2.4 Å. Analysis of the homodimeric CrISA1 structure reveals a unique elongated structure with monomers connected end-to-end. The crystal complex reveals details about the mechanism of branch binding that explains the low activity of CrISA1 toward tightly spaced branches and reveals the presence of additional secondary surface carbohydrate binding sites.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Glucanos/química , Isoamilasa/química , Proteínas de Plantas/química , Cristalografía por Rayos X , Estructura Terciaria de Proteína
6.
Proteins ; 82(4): 607-19, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24123219

RESUMEN

The ubiquitous disulfide reductase thioredoxin (Trx) regulates several important biological processes such as seed germination in plants. Oxidized cytosolic Trx is regenerated by nicotinamide adenine dinucleotide phosphate (NADPH)-dependent thioredoxin reductase (NTR) in a multistep transfer of reducing equivalents from NADPH to Trx via a tightly NTR-bound flavin. Here, interactions between NTR and Trx are predicted by molecular modelling of the barley NTR:Trx complex (HvNTR2:HvTrxh2) and probed by site directed mutagenesis. Enzyme kinetics analysis reveals mutants in a loop of the flavin adenine dinucleotide (FAD)-binding domain of HvNTR2 to strongly affect the interaction with Trx. In particular, Trp42 and Met43 play key roles for recognition of the endogenous HvTrxh2. Trx from Arabidopsis thaliana is also efficiently recycled by HvNTR2 but turnover in this case appears to be less dependent on these two residues, suggesting a distinct mode for NTR:Trx recognition. Comparison between the HvNTR2:HvTrxh2 model and the crystal structure of the Escherichia coli NTR:Trx complex reveals major differences in interactions involving the FAD- and NADPH-binding domains as supported by our experiments. Overall, the findings suggest that NTR:Trx interactions in different biological systems are fine-tuned by multiple intermolecular contacts.


Asunto(s)
Arabidopsis/enzimología , Escherichia coli/enzimología , Hordeum/enzimología , Reductasa de Tiorredoxina-Disulfuro/química , Tiorredoxinas/química , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , NADP/química , Conformación Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia
7.
Anal Biochem ; 449: 45-51, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24333247

RESUMEN

A new chromogenic substrate to assay the starch debranching enzymes limit dextrinase and pullulanase is described. The 2-chloro-4-nitrophenyl glycoside of a commercially available branched heptasaccharide (Glc-maltotriosyl-maltotriose) was found to be a suitable specific substrate for starch debranching enzymes and allows convenient assays of enzymatic activities in a format suited for high-throughput analysis. The kinetic parameters of these enzymes toward the synthesized substrate are determined, and the selectivity of the substrate in a complex cereal-based extract is established.


Asunto(s)
Pruebas de Enzimas/métodos , Glicósido Hidrolasas/metabolismo , Hordeum/enzimología , Glicósidos/metabolismo , Hordeum/metabolismo , Cinética , Nitrofenoles/metabolismo , Almidón/metabolismo , Especificidad por Sustrato
8.
BMC Plant Biol ; 12: 223, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23171412

RESUMEN

BACKGROUND: Starch is stored in higher plants as granules composed of semi-crystalline amylopectin and amorphous amylose. Starch granules provide energy for the plant during dark periods and for germination of seeds and tubers. Dietary starch is also a highly glycemic carbohydrate being degraded to glucose and rapidly absorbed in the small intestine. But a portion of dietary starch, termed "resistant starch" (RS) escapes digestion and reaches the large intestine, where it is fermented by colonic bacteria producing short chain fatty acids (SCFA) which are linked to several health benefits. The RS is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. RESULTS: In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb) in barley (Hordeum vulgare L.), resulting in production of amylose-only starch granules in the endosperm. This trait was segregating 3:1. Amylose-only starch granules were irregularly shaped and showed peculiar thermal properties and crystallinity. Transgenic lines retained high-yield possibly due to a pleiotropic upregualtion of other starch biosynthetic genes compensating the SBEs loss. For gelatinized starch, a very high content of RS (65 %) was observed, which is 2.2-fold higher than control (29%). The amylose-only grains germinated with same frequency as control grains. However, initial growth was delayed in young plants. CONCLUSIONS: This is the first time that pure amylose has been generated with high yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch branching enzymes. We demonstrate that amylopectin is not essential for starch granule crystallinity and integrity. However the slower initial growth of shoots from amylose-only grains may be due to an important physiological role played by amylopectin ordered crystallinity for rapid starch remobilization explaining the broad conservation in the plant kingdom of the amylopectin structure.


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano/genética , Amilosa/biosíntesis , Genes de Plantas/genética , Hordeum/enzimología , Hordeum/genética , Supresión Genética , Rastreo Diferencial de Calorimetría , Segregación Cromosómica/genética , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Pleiotropía Genética , Germinación , Hordeum/anatomía & histología , Hordeum/crecimiento & desarrollo , Microscopía de Polarización , Peso Molecular , Fenotipo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/anatomía & histología , Semillas/ultraestructura , Solubilidad , Temperatura , Transformación Genética , Transgenes/genética , Difracción de Rayos X , beta-Glucanos/metabolismo
9.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 9): 1008-12, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22949184

RESUMEN

Barley limit dextrinase (HvLD) is a debranching enzyme from glycoside hydrolase family 13 subfamily 13 (GH13_13) that hydrolyses α-1,6-glucosidic linkages in limit dextrins derived from amylopectin. The structure of HvLD was solved and refined to 1.9 Å resolution. The structure has a glycerol molecule in the active site and is virtually identical to the structures of HvLD in complex with the competitive inhibitors α-cyclodextrin and ß-cyclodextrin solved to 2.5 and 2.1 Å resolution, respectively. However, three loops in the N-terminal domain that are shown here to resemble carbohydrate-binding module family 21 were traceable and were included in the present HvLD structure but were too flexible to be traced and included in the structures of the two HvLD-inhibitor complexes.


Asunto(s)
Glicósido Hidrolasas/química , Hordeum/enzimología , Homología Estructural de Proteína , Glicósido Hidrolasas/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína , Almidón/química , Almidón/metabolismo , Especificidad por Sustrato
10.
Methods Mol Biol ; 2313: 241-258, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34478142

RESUMEN

In this method chapter, we provide a brief overview of the key methods available to measure self-association of monoclonal antibodies (mAbs) and explain for which experimental throughputs they are usually applied. We then focus on dynamic light scattering (DLS) and describe experimental details on how to measure the diffusion interaction parameter (kD) which is occasionally referred to as the gold standard for measuring self-association of proteins. The kD is a well-established parameter to predict solution viscosity, which is one of the most critical developability parameters of mAbs. Finally, we present a pH and excipient screen that is designed to measure self-association with DLS under conditions that are relevant for bioprocessing and formulation of mAbs. The presented light scattering methods are well suited for lead candidate selections where it is essential to select mAbs with high developability potential for progression toward first human dose.


Asunto(s)
Anticuerpos Monoclonales , Luz , Difusión , Dispersión Dinámica de Luz , Humanos , Dispersión de Radiación , Viscosidad
11.
J Biol Chem ; 285(31): 24066-77, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20463021

RESUMEN

Plant fatty acids can be completely degraded within the peroxisomes. Fatty acid degradation plays a role in several plant processes including plant hormone synthesis and seed germination. Two multifunctional peroxisomal isozymes, MFP2 and AIM1, both with 2-trans-enoyl-CoA hydratase and l-3-hydroxyacyl-CoA dehydrogenase activities, function in mouse ear cress (Arabidopsis thaliana) peroxisomal beta-oxidation, where fatty acids are degraded by the sequential removal of two carbon units. A deficiency in either of the two isozymes gives rise to a different phenotype; the biochemical and molecular background for these differences is not known. Structure determination of Arabidopsis MFP2 revealed that plant peroxisomal MFPs can be grouped into two families, as defined by a specific pattern of amino acid residues in the flexible loop of the acyl-binding pocket of the 2-trans-enoyl-CoA hydratase domain. This could explain the differences in substrate preferences and specific biological functions of the two isozymes. The in vitro substrate preference profiles illustrate that the Arabidopsis AIM1 hydratase has a preference for short chain acyl-CoAs compared with the Arabidopsis MFP2 hydratase. Remarkably, neither of the two was able to catabolize enoyl-CoA substrates longer than 14 carbon atoms efficiently, suggesting the existence of an uncharacterized long chain enoyl-CoA hydratase in Arabidopsis peroxisomes.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Regulación de la Expresión Génica de las Plantas , Oxígeno/química , Peroxisomas/química , Proteínas de Arabidopsis/metabolismo , Cristalografía por Rayos X/métodos , Ácidos Grasos/química , Modelos Biológicos , Oxidación-Reducción , Fenotipo , Unión Proteica , Conformación Proteica , Isoformas de Proteínas , Estructura Terciaria de Proteína , Especificidad por Sustrato
12.
J Biol Chem ; 285(31): 24078-88, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20463027

RESUMEN

The breakdown of fatty acids, performed by the beta-oxidation cycle, is crucial for plant germination and sustainability. beta-Oxidation involves four enzymatic reactions. The final step, in which a two-carbon unit is cleaved from the fatty acid, is performed by a 3-ketoacyl-CoA thiolase (KAT). The shortened fatty acid may then pass through the cycle again (until reaching acetoacetyl-CoA) or be directed to a different cellular function. Crystal structures of KAT from Arabidopsis thaliana and Helianthus annuus have been solved to 1.5 and 1.8 A resolution, respectively. Their dimeric structures are very similar and exhibit a typical thiolase-like fold; dimer formation and active site conformation appear in an open, active, reduced state. Using an interdisciplinary approach, we confirmed the potential of plant KATs to be regulated by the redox environment in the peroxisome within a physiological range. In addition, co-immunoprecipitation studies suggest an interaction between KAT and the multifunctional protein that is responsible for the preceding two steps in beta-oxidation, which would allow a route for substrate channeling. We suggest a model for this complex based on the bacterial system.


Asunto(s)
Acetil-CoA C-Aciltransferasa/química , Arabidopsis/enzimología , Helianthus/enzimología , Oxidación-Reducción , Peroxisomas/enzimología , Clonación Molecular , Cristalografía por Rayos X/métodos , Dimerización , Ácidos Grasos/química , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Lípidos/química , Modelos Biológicos , Oxígeno/química , Especificidad por Sustrato
13.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 9): 932-41, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19690371

RESUMEN

Thioredoxins (Trxs) are protein disulfide reductases that regulate the intracellular redox environment and are important for seed germination in plants. Trxs are in turn regulated by NADPH-dependent thioredoxin reductases (NTRs), which provide reducing equivalents to Trx using NADPH to recycle Trxs to the active form. Here, the first crystal structure of a cereal NTR, HvNTR2 from Hordeum vulgare (barley), is presented, which is also the first structure of a monocot plant NTR. The structure was determined at 2.6 A resolution and refined to an R(cryst) of 19.0% and an R(free) of 23.8%. The dimeric protein is structurally similar to the structures of AtNTR-B from Arabidopsis thaliana and other known low-molecular-weight NTRs. However, the relative position of the two NTR cofactor-binding domains, the FAD and the NADPH domains, is not the same. The NADPH domain is rotated by 25 degrees and bent by a 38% closure relative to the FAD domain in comparison with AtNTR-B. The structure may represent an intermediate between the two conformations described previously: the flavin-oxidizing (FO) and the flavin-reducing (FR) conformations. Here, analysis of interdomain contacts as well as phylogenetic studies lead to the proposal of a new reaction scheme in which NTR-Trx interactions mediate the FO to FR transformation.


Asunto(s)
Proteínas de Arabidopsis/química , Tiorredoxina Reductasa 2/química , Reductasa de Tiorredoxina-Disulfuro/química , Regulación Alostérica , Sitio Alostérico , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo , Cristalización , Cristalografía por Rayos X , FMN Reductasa/química , FMN Reductasa/metabolismo , Germinación , Hordeum/enzimología , Oxidación-Reducción , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Homología Estructural de Proteína , Tiorredoxina Reductasa 2/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo
14.
Plant Physiol Biochem ; 46(3): 292-301, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18272379

RESUMEN

Acyl-CoA oxidases (in peroxisomes) and acyl-CoA dehydrogenases (in mitochondria) catalyse the first step in fatty acid beta-oxidation, the pathway responsible for lipid catabolism and plant hormone biosynthesis. The interplay and differences between peroxisomal and mitochondrial beta-oxidation processes are highlighted by the variation in the enzymes involved. Structure and sequence comparisons are made with a focus on the enzyme's mechanistic means to control electron transfer paths, reactivity towards molecular oxygen, and spatial and architectural requirements for substrate discrimination.


Asunto(s)
Acil-CoA Oxidasa/química , Acil-CoA Oxidasa/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Acil-CoA Deshidrogenasas/química , Acil-CoA Deshidrogenasas/genética , Acil-CoA Deshidrogenasas/metabolismo , Acil-CoA Oxidasa/genética , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Estructura Secundaria de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato
15.
Structure ; 14(11): 1701-10, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17098195

RESUMEN

Thioredoxin is ubiquitous and regulates various target proteins through disulfide bond reduction. We report the structure of thioredoxin (HvTrxh2 from barley) in a reaction intermediate complex with a protein substrate, barley alpha-amylase/subtilisin inhibitor (BASI). The crystal structure of this mixed disulfide shows a conserved hydrophobic motif in thioredoxin interacting with a sequence of residues from BASI through van der Waals contacts and backbone-backbone hydrogen bonds. The observed structural complementarity suggests that the recognition of features around protein disulfides plays a major role in the specificity and protein disulfide reductase activity of thioredoxin. This novel insight into the function of thioredoxin constitutes a basis for comprehensive understanding of its biological role. Moreover, comparison with structurally related proteins shows that thioredoxin shares a mechanism with glutaredoxin and glutathione transferase for correctly positioning substrate cysteine residues at the catalytic groups but possesses a unique structural element that allows recognition of protein disulfides.


Asunto(s)
Proteína Disulfuro Reductasa (Glutatión)/química , Tiorredoxinas/química , Secuencias de Aminoácidos , Cristalografía por Rayos X , Cisteína/química , Disulfuros/química , Glutarredoxinas , Glutatión/química , Glutatión Transferasa/química , Glutatión Transferasa/metabolismo , Hordeum , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Oxidorreductasas/química , Pliegue de Proteína , Proteínas/química
16.
Protein Sci ; 16(2): 261-72, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17242430

RESUMEN

Two distinct ways of organizing fatty acid biosynthesis exist: the multifunctional type I fatty acid synthase (FAS) of mammals, fungi, and lower eukaryotes with activities residing on one or two polypeptides; and the dissociated type II FAS of prokaryotes, plastids, and mitochondria with individual activities encoded by discrete genes. The beta-ketoacyl [ACP] synthase (KAS) moiety of the mitochondrial FAS (mtKAS) is targeted by the antibiotic cerulenin and possibly by the other antibiotics inhibiting prokaryotic KASes: thiolactomycin, platensimycin, and the alpha-methylene butyrolactone, C75. The high degree of structural similarity between mitochondrial and prokaryotic KASes complicates development of novel antibiotics targeting prokaryotic KAS without affecting KAS domains of cytoplasmic FAS. KASes catalyze the C(2) fatty acid elongation reaction using either a Cys-His-His or Cys-His-Asn catalytic triad. Three KASes with different substrate specificities participate in synthesis of the C(16) and C(18) products of prokaryotic FAS. By comparison, mtKAS carries out all elongation reactions in the mitochondria. We present the X-ray crystal structures of the Cys-His-His-containing human mtKAS and its hexanoyl complex plus the hexanoyl complex of the plant mtKAS from Arabidopsis thaliana. The structures explain (1) the bimodal (C(6) and C(10)-C(12)) substrate preferences leading to the C(8) lipoic acid precursor and long chains for the membranes, respectively, and (2) the low cerulenin sensitivity of the human enzyme; and (3) reveal two different potential acyl-binding-pocket extensions. Rearrangements taking place in the active site, including subtle changes in the water network, indicate a change in cooperativity of the active-site histidines upon primer binding.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/química , Ácido Graso Sintasas/química , Proteínas Mitocondriales/química , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cerulenina/química , Cerulenina/metabolismo , Cristalografía por Rayos X , Ácido Graso Sintasas/metabolismo , Humanos , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
17.
FEBS J ; 273(4): 695-710, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16441657

RESUMEN

Beta-ketoacyl-acyl carrier protein (ACP) synthase enzymes join short carbon units to construct fatty acyl chains by a three-step Claisen condensation reaction. The reaction starts with a trans thioesterification of the acyl primer substrate from ACP to the enzyme. Subsequently, the donor substrate malonyl-ACP is decarboxylated to form a carbanion intermediate, which in the third step attacks C1 of the primer substrate giving rise to an elongated acyl chain. A subgroup of beta-ketoacyl-ACP synthases, including mitochondrial beta-ketoacyl-ACP synthase, bacterial plus plastid beta-ketoacyl-ACP synthases I and II, and a domain of human fatty acid synthase, have a Cys-His-His triad and also a completely conserved Lys in the active site. To examine the role of these residues in catalysis, H298Q, H298E and six K328 mutants of Escherichia colibeta-ketoacyl-ACP synthase I were constructed and their ability to carry out the trans thioesterification, decarboxylation and/or condensation steps of the reaction was ascertained. The crystal structures of wild-type and eight mutant enzymes with and/or without bound substrate were determined. The H298E enzyme shows residual decarboxylase activity in the pH range 6-8, whereas the H298Q enzyme appears to be completely decarboxylation deficient, showing that H298 serves as a catalytic base in the decarboxylation step. Lys328 has a dual role in catalysis: its charge influences acyl transfer to the active site Cys, and the steric restraint imposed on H333 is of critical importance for decarboxylation activity. This restraint makes H333 an obligate hydrogen bond donor at Nepsilon, directed only towards the active site and malonyl-ACP binding area in the fatty acid complex.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/química , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , Ácidos Grasos/biosíntesis , Histidina/metabolismo , Lisina/metabolismo , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/genética , Proteína Transportadora de Acilo/química , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Sitios de Unión , Cationes/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Humanos , Modelos Moleculares , Estructura Molecular , Mutación Puntual , Conformación Proteica
18.
J Mol Biol ; 345(3): 487-500, 2005 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-15581893

RESUMEN

The peroxisomal acyl-CoA oxidase family plays an essential role in lipid metabolism by catalyzing the conversion of acyl-CoA into trans-2-enoyl-CoA during fatty acid beta-oxidation. Here, we report the X-ray structure of the FAD-containing Arabidopsis thaliana acyl-CoA oxidase 1 (ACX1), the first three-dimensional structure of a plant acyl-CoA oxidase. Like other acyl-CoA oxidases, the enzyme is a dimer and it has a fold resembling that of mammalian acyl-CoA oxidase. A comparative analysis including mammalian acyl-CoA oxidase and the related tetrameric mitochondrial acyl-CoA dehydrogenases reveals a substrate-binding architecture that explains the observed preference for long-chained, mono-unsaturated substrates in ACX1. Two anions are found at the ACX1 dimer interface and for the first time the presence of a disulfide bridge in a peroxisomal protein has been observed. The functional differences between the peroxisomal acyl-CoA oxidases and the mitochondrial acyl-CoA dehydrogenases are attributed to structural differences in the FAD environments.


Asunto(s)
Acil-CoA Oxidasa/metabolismo , Arabidopsis/enzimología , Metabolismo de los Lípidos , Acil-CoA Oxidasa/química , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
19.
J Pharm Sci ; 105(11): 3366-3375, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27663383

RESUMEN

Nanoparticle tracking analysis (NTA) has attracted great interest for application in the field of submicron particle characterization for biopharmaceuticals. It has the virtue of direct sample visualization and particle-by-particle tracking, but the complexity of method development has limited its routine applicability. We systematically evaluated data collection and processing parameters as well as sample handling methods using shake-stressed protein samples. The camera shutter and gain were identified as the key factors influencing NTA results. We also demonstrated that sample filtration was necessary for NTA analysis if there were high numbers of micron particles, whereas the choice of filter membrane was critical for data quality. Sample dilution into corresponding formulation buffer did not affect particle size distributions in our study. Finally, NTA analysis exhibited excellent repeatability in intraday comparison of multiple measurements on the same sample and interday comparison on different batches of samples. Shaking-induced protein aggregation could also be sensitively monitored by NTA. In conclusion, NTA analysis can be used as a robust stability-indicating method for the characterization of proteinaceous submicron particles and thereby complement other analytical methods, provided that consistent sample handling and parametric settings are established for the specific case study.


Asunto(s)
Química Farmacéutica/métodos , Inmunoglobulina G/química , Nanopartículas/química , Tamaño de la Partícula , Anticuerpos Monoclonales/análisis , Anticuerpos Monoclonales/química , Evaluación Preclínica de Medicamentos/métodos , Inmunoglobulina G/análisis , Nanopartículas/análisis , Proteínas/análisis , Proteínas/química
20.
Biochim Biophys Acta ; 1702(2): 173-9, 2004 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-15488769

RESUMEN

Sialoadhesin is a sialic acid-binding immunoglobulin-like lectin (Siglec), expressed on subsets of macrophages. It is a model system for Siglec receptor-mediated cell surface interactions through binding of sialylated glycoconjugates. The N-terminal sialoadhesin domain can mediate sialic acid-binding on its own. The structure of this domain has been determined in complex with a sialic acid-containing heptapeptide, (Ala-Gly-His-Thr(Neu5Ac)-Trp-Gly-His). The affinity of sialoadhesin for this ligand is four times higher than the affinity for the natural linkage 2,3'-sialyllactose. The structure of the glycopeptide complex suggests strategies for ligand optimization and provides possible explanations for the observed differences in specificities among the Siglecs.


Asunto(s)
Glicopéptidos/química , Glicoproteínas de Membrana/química , Estructura Terciaria de Proteína , Receptores Inmunológicos/química , Animales , Células CHO , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/metabolismo , Cricetinae , Cristalografía por Rayos X , Glicopéptidos/metabolismo , Humanos , Ligandos , Sustancias Macromoleculares , Glicoproteínas de Membrana/metabolismo , Ratones , Modelos Moleculares , Receptores Inmunológicos/metabolismo , Lectina 1 Similar a Ig de Unión al Ácido Siálico , Ácidos Siálicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA