Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(4): 882-896.e18, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30639098

RESUMEN

T helper type 2 (Th2) cells are important regulators of mammalian adaptive immunity and have relevance for infection, autoimmunity, and tumor immunology. Using a newly developed, genome-wide retroviral CRISPR knockout (KO) library, combined with RNA-seq, ATAC-seq, and ChIP-seq, we have dissected the regulatory circuitry governing activation and differentiation of these cells. Our experiments distinguish cell activation versus differentiation in a quantitative framework. We demonstrate that these two processes are tightly coupled and are jointly controlled by many transcription factors, metabolic genes, and cytokine/receptor pairs. There are only a small number of genes regulating differentiation without any role in activation. By combining biochemical and genetic data, we provide an atlas for Th2 differentiation, validating known regulators and identifying factors, such as Pparg and Bhlhe40, as part of the core regulatory network governing Th2 helper cell fates.


Asunto(s)
Receptor Cross-Talk/inmunología , Células Th2/inmunología , Células Th2/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Cromatina , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Linfocitos T Colaboradores-Inductores/metabolismo , Factores de Transcripción/metabolismo
2.
PLoS Biol ; 19(4): e3001101, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33793547

RESUMEN

Here, we reveal that the regulation of Drosophila odorant receptor (OR) expression during the pupal stage is permissive and imprecise. We found that directly after hatching an OR feedback mechanism both directs and refines OR expression. We demonstrate that, as in mice, dLsd1 and Su(var)3-9 balance heterochromatin formation to direct OR expression. We show that the expressed OR induces dLsd1 and Su(var)3-9 expression, linking OR level and possibly function to OR expression. OR expression refinement shows a restricted duration, suggesting that a gene regulatory critical period brings olfactory sensory neuron differentiation to an end. Consistent with a change in differentiation, stress during the critical period represses dLsd1 and Su(var)3-9 expression and makes the early permissive OR expression permanent. This induced permissive gene regulatory state makes OR expression resilient to stress later in life. Hence, during a critical period OR feedback, similar to in mouse OR selection, defines adult OR expression in Drosophila.


Asunto(s)
Drosophila , Neurogénesis/genética , Neuronas Receptoras Olfatorias/fisiología , Receptores Odorantes/fisiología , Estrés Fisiológico/fisiología , Animales , Animales Modificados Genéticamente , Diferenciación Celular/genética , Ensamble y Desensamble de Cromatina/genética , Drosophila/genética , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Retroalimentación Fisiológica/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Heterocromatina/metabolismo , Humanos , Masculino , Neurogénesis/fisiología , Bulbo Olfatorio/citología , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/metabolismo , Oxidorreductasas N-Desmetilantes/genética , Oxidorreductasas N-Desmetilantes/metabolismo , Pupa , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Tiempo
3.
Nature ; 563(7730): 197-202, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30356220

RESUMEN

As the first line of defence against pathogens, cells mount an innate immune response, which varies widely from cell to cell. The response must be potent but carefully controlled to avoid self-damage. How these constraints have shaped the evolution of innate immunity remains poorly understood. Here we characterize the innate immune response's transcriptional divergence between species and variability in expression among cells. Using bulk and single-cell transcriptomics in fibroblasts and mononuclear phagocytes from different species, challenged with immune stimuli, we map the architecture of the innate immune response. Transcriptionally diverging genes, including those that encode cytokines and chemokines, vary across cells and have distinct promoter structures. Conversely, genes that are involved in the regulation of this response, such as those that encode transcription factors and kinases, are conserved between species and display low cell-to-cell variability in expression. We suggest that this expression pattern, which is observed across species and conditions, has evolved as a mechanism for fine-tuned regulation to achieve an effective but balanced response.


Asunto(s)
Células/metabolismo , Evolución Molecular , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Especificidad de Órganos/genética , Especificidad de la Especie , Transcripción Genética/genética , Animales , Células/citología , Citocinas/genética , Humanos , Regiones Promotoras Genéticas/genética
4.
Nature ; 563(7731): 347-353, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30429548

RESUMEN

During early human pregnancy the uterine mucosa transforms into the decidua, into which the fetal placenta implants and where placental trophoblast cells intermingle and communicate with maternal cells. Trophoblast-decidual interactions underlie common diseases of pregnancy, including pre-eclampsia and stillbirth. Here we profile the transcriptomes of about 70,000 single cells from first-trimester placentas with matched maternal blood and decidual cells. The cellular composition of human decidua reveals subsets of perivascular and stromal cells that are located in distinct decidual layers. There are three major subsets of decidual natural killer cells that have distinctive immunomodulatory and chemokine profiles. We develop a repository of ligand-receptor complexes and a statistical tool to predict the cell-type specificity of cell-cell communication via these molecular interactions. Our data identify many regulatory interactions that prevent harmful innate or adaptive immune responses in this environment. Our single-cell atlas of the maternal-fetal interface reveals the cellular organization of the decidua and placenta, and the interactions that are critical for placentation and reproductive success.


Asunto(s)
Comunicación Celular , Feto/citología , Histocompatibilidad Materno-Fetal/inmunología , Placenta/citología , Placenta/metabolismo , Embarazo/inmunología , Análisis de la Célula Individual , Comunicación Celular/inmunología , Diferenciación Celular/genética , Decidua/citología , Decidua/inmunología , Decidua/metabolismo , Femenino , Feto/inmunología , Feto/metabolismo , Humanos , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Ligandos , Placenta/inmunología , ARN Citoplasmático Pequeño/genética , Análisis de Secuencia de ARN , Células del Estroma/citología , Células del Estroma/metabolismo , Transcriptoma , Trofoblastos/citología , Trofoblastos/inmunología , Trofoblastos/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(32): E7568-E7577, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30038005

RESUMEN

Mosquito blood cells are immune cells that help control infection by vector-borne pathogens. Despite their importance, little is known about mosquito blood cell biology beyond morphological and functional criteria used for their classification. Here, we combined the power of single-cell RNA sequencing, high-content imaging flow cytometry, and single-molecule RNA hybridization to analyze a subset of blood cells of the malaria mosquito Anopheles gambiae By demonstrating that blood cells express nearly half of the mosquito transcriptome, our dataset represents an unprecedented view into their transcriptional program. Analyses of differentially expressed genes identified transcriptional signatures of two cell types and provide insights into the current classification of these cells. We further demonstrate the active transfer of a cellular marker between blood cells that may confound their identification. We propose that cell-to-cell exchange may contribute to cellular diversity and functional plasticity seen across biological systems.


Asunto(s)
Anopheles/genética , Células Sanguíneas/clasificación , Plasticidad de la Célula/genética , Malaria/transmisión , Mosquitos Vectores/genética , Animales , Animales Modificados Genéticamente , Anopheles/inmunología , Células Sanguíneas/inmunología , Comunicación Celular/genética , Conjuntos de Datos como Asunto , Femenino , Genómica/métodos , Mosquitos Vectores/inmunología , ARN/genética , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcriptoma
6.
Haematologica ; 103(4): 666-678, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29449436

RESUMEN

A subset of hematologic cancer patients is refractory to treatment or suffers relapse, due in part to minimal residual disease, whereby some cancer cells survive treatment. Cell-adhesion-mediated drug resistance is an important mechanism, whereby cancer cells receive survival signals via interaction with e.g. stromal cells. No genome-wide studies of in vitro systems have yet been performed to compare gene expression in different cell subsets within a co-culture and cells grown separately. Using RNA sequencing and species-specific read mapping, we compared transcript levels in human Jeko-1 mantle cell lymphoma cells stably adhered to mouse MS-5 stromal cells or in suspension within a co-culture or cultured separately as well as in stromal cells in co-culture or in separate culture. From 1050 differentially expressed transcripts in adherent mantle cell lymphoma cells, we identified 24 functional categories that together represent four main functional themes, anti-apoptosis, B-cell signaling, cell adhesion/migration and early mitosis. A comparison with previous mantle cell lymphoma and chronic lymphocytic leukemia studies, of gene expression differences between lymph node and blood, identified 116 genes that are differentially expressed in all three studies. From these genes, we suggest a core set of genes (CCL3, CCL4, DUSP4, ETV5, ICAM1, IL15RA, IL21R, IL4I1, MFSD2A, NFKB1, NFKBIE, SEMA7A, TMEM2) characteristic of cells undergoing cell-adhesion-mediated microenvironment signaling in mantle cell lymphoma/chronic lymphocytic leukemia. The model system developed and characterized here together with the core gene set will be useful for future studies of pathways that mediate increased cancer cell survival and drug resistance mechanisms.


Asunto(s)
Adhesión Celular/fisiología , Perfilación de la Expresión Génica , Linfoma/patología , Análisis de Secuencia de ARN , Células del Estroma/citología , Animales , Línea Celular , Línea Celular Tumoral , Supervivencia Celular , Técnicas de Cocultivo , Resistencia a Medicamentos , Regulación Neoplásica de la Expresión Génica , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/patología , Ratones , Comunicación Paracrina
7.
Nucleic Acids Res ; 41(10): 5368-81, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23580547

RESUMEN

Transcription-blocking oxidative DNA damage is believed to contribute to aging and to underlie activation of oxidative stress responses and down-regulation of insulin-like signaling (ILS) in Nucleotide Excision Repair (NER) deficient mice. Here, we present the first quantitative proteomic description of the Caenorhabditis elegans NER-defective xpa-1 mutant and compare the proteome and transcriptome signatures. Both methods indicated activation of oxidative stress responses, which was substantiated biochemically by a bioenergetic shift involving increased steady-state reactive oxygen species (ROS) and Adenosine triphosphate (ATP) levels. We identify the lesion-detection enzymes of Base Excision Repair (NTH-1) and global genome NER (XPC-1 and DDB-1) as upstream requirements for transcriptomic reprogramming as RNA-interference mediated depletion of these enzymes prevented up-regulation of genes over-expressed in the xpa-1 mutant. The transcription factors SKN-1 and SLR-2, but not DAF-16, were identified as effectors of reprogramming. As shown in human XPA cells, the levels of transcription-blocking 8,5'-cyclo-2'-deoxyadenosine lesions were reduced in the xpa-1 mutant compared to the wild type. Hence, accumulation of cyclopurines is unlikely to be sufficient for reprogramming. Instead, our data support a model where the lesion-detection enzymes NTH-1, XPC-1 and DDB-1 play active roles to generate a genomic stress signal sufficiently strong to result in transcriptomic reprogramming in the xpa-1 mutant.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Reparación del ADN , Proteoma , Transcriptoma , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Animales , Antioxidantes/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , ADN Glicosilasas/genética , Endonucleasas/genética , Mutación , Purinas/metabolismo , Proteínas Ubiquitinadas/metabolismo
8.
Biophys Rev ; 16(1): 29-56, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38495441

RESUMEN

Single-cell analysis is currently one of the most high-resolution techniques to study biology. The large complex datasets that have been generated have spurred numerous developments in computational biology, in particular the use of advanced statistics and machine learning. This review attempts to explain the deeper theoretical concepts that underpin current state-of-the-art analysis methods. Single-cell analysis is covered from cell, through instruments, to current and upcoming models. The aim of this review is to spread concepts which are not yet in common use, especially from topology and generative processes, and how new statistical models can be developed to capture more of biology. This opens epistemological questions regarding our ontology and models, and some pointers will be given to how natural language processing (NLP) may help overcome our cognitive limitations for understanding single-cell data.

9.
BMC Genomics ; 14: 479, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23865462

RESUMEN

BACKGROUND: Gcn5 belongs to a family of histone acetyltransferases (HATs) that regulate protein function by acetylation. Gcn5 plays several different roles in gene transcription throughout the genome but their characterisation by classical mutation approaches is hampered by the high degree of apparent functional redundancy between HAT proteins. RESULTS: Here we utilise the reduced redundancy associated with the transiently high levels of genomic reprogramming during stress adaptation as a complementary approach to understand the functions of redundant protein families like HATs. We show genome-wide evidence for two functionally distinct roles of Gcn5. First, Gcn5 transiently re-localises to the ORFs of long genes during stress adaptation. Taken together with earlier mechanistic studies, our data suggests that Gcn5 plays a genome- wide role in specifically increasing the transcriptional elongation of long genes, thus increasing the production efficiency of complete long transcripts. Second, we suggest that Gcn5 transiently interacts with histones close to the transcription start site of the many genes that it activates during stress adaptation by acetylation of histone H3K18, leading to histone depletion, probably as a result of nucleosome loss as has been described previously. CONCLUSIONS: We show that stress adaptation can be used to elucidate the functions of otherwise redundant proteins, like Gcn5, in gene transcription. Further, we show that normalization of chromatin-associated protein levels in ChIP experiments in relation to the histone levels may provide a useful complement to standard approaches. In the present study analysis of data in this way provides an alternative explanation for previously indicated repressive role of Gcn5 in gene transcription.


Asunto(s)
Genoma Fúngico/genética , Histona Acetiltransferasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Estrés Fisiológico/genética , Acetilación , Adaptación Fisiológica/genética , Histona Acetiltransferasas/genética , Histonas/metabolismo , Sistemas de Lectura Abierta/genética , Regiones Promotoras Genéticas/genética , Transporte de Proteínas/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo , Transcripción Genética/genética
10.
J Immunother Cancer ; 11(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36746513

RESUMEN

BACKGROUND: Limited persistence of functional CAR T cells in the immunosuppressive solid tumor microenvironment remains a major hurdle in the successful translation of CAR T cell therapy to treat solid tumors. Fine-tuning of CAR T cell activation by mutating CD3ζ chain immunoreceptor tyrosine-based activation motifs (ITAMs) in CD19-CAR T cells (containing the CD28 costimulatory domain) has proven to extend functional CAR T cell persistence in preclinical models of B cell malignancies. METHODS: In this study, two conventional second-generation MSLN-CAR T cell constructs encoding for either a CD28 co-stimulatory (M28z) or 4-1BB costimulatory (MBBz) domain and a novel mesothelin (MSLN)-directed CAR T cell construct encoding for the CD28 costimulatory domain and CD3ζ chain containing a single ITAM (M1xx) were evaluated using in vitro and in vivo preclinical models of ovarian cancer. Two ovarian cancer cell lines and two orthotopic models of ovarian cancer in NSG mice were used: SKOV-3 cells inoculated through microsurgery in the ovary and to mimic a disseminated model of advanced ovarian cancer, OVCAR-4 cells injected intraperitoneally. MSLN-CAR T cell treatment efficacy was evaluated by survival analysis and the characterization and quantification of the different MSLN-CAR T cells were performed by flow cytometry, quantitative PCR and gene expression analysis. RESULTS: M1xx CAR T cells elicited superior antitumor potency and persistence, as compared with the conventional second generation M28z and MBBz CAR T cells. Ex vivo M28z and MBBz CAR T cells displayed a more exhausted phenotype than M1xx CAR T cells as determined by co-expression of PD-1, LAG-3 and TIM-3. Furthermore, M1xx CAR T cells showed superior ex vivo IFNy, TNF and GzB production and were characterized by a self-renewal gene signature. CONCLUSIONS: Altogether, our study demonstrates the enhanced therapeutic potential of MSLN-CAR T cells expressing a mutated CD3ζ chain containing a single ITAM for the treatment of ovarian cancer. CAR T cells armored with calibrated activation potential may improve the clinical responses in solid tumors.


Asunto(s)
Neoplasias Ováricas , Receptores Quiméricos de Antígenos , Humanos , Femenino , Animales , Ratones , Mesotelina , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/metabolismo , Antígenos CD28/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Microambiente Tumoral
11.
Front Immunol ; 14: 1224591, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575232

RESUMEN

Dendritic cells and macrophages are integral parts of the innate immune system and gatekeepers against infection. The protozoan pathogen, Toxoplasma gondii, is known to hijack host immune cells and modulate their immune response, making it a compelling model to study host-pathogen interactions. Here we utilize single cell Dual RNA-seq to parse out heterogeneous transcription of mouse bone marrow-derived dendritic cells (BMDCs) infected with two distinct genotypes of T. gondii parasites, over multiple time points post infection. We show that the BMDCs elicit differential responses towards T. gondii infection and that the two parasite lineages distinctly manipulate subpopulations of infected BMDCs. Co-expression networks define host and parasite genes, with implications for modulation of host immunity. Integrative analysis validates previously established immune pathways and additionally, suggests novel candidate genes involved in host-pathogen interactions. Altogether, this study provides a comprehensive resource for characterizing host-pathogen interplay at high-resolution.


Asunto(s)
Toxoplasma , Animales , Ratones , Macrófagos , Interacciones Huésped-Patógeno/genética
12.
Microbiol Spectr ; : e0367122, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36847501

RESUMEN

Malaria inflicts the highest rate of morbidity and mortality among the vector-borne diseases. The dramatic bottleneck of parasite numbers that occurs in the gut of the obligatory mosquito vector provides a promising target for novel control strategies. Using single-cell transcriptomics, we analyzed Plasmodium falciparum development in the mosquito gut, from unfertilized female gametes through the first 20 h after blood feeding, including the zygote and ookinete stages. This study revealed the temporal gene expression of the ApiAP2 family of transcription factors and of parasite stress genes in response to the harsh environment of the mosquito midgut. Further, employing structural protein prediction analyses, we found several upregulated genes predicted to encode intrinsically disordered proteins (IDPs), a category of proteins known for their importance in regulation of transcription, translation, and protein-protein interactions. IDPs are known for their antigenic properties and may serve as suitable targets for antibody- or peptide-based transmission suppression strategies. In total, this study uncovers the P. falciparum transcriptome from early to late parasite development in the mosquito midgut, inside its natural vector, which provides an important resource for future malaria transmission-blocking initiatives. IMPORTANCE The malaria parasite Plasmodium falciparum causes more than half a million deaths per year. The current treatment regimen targets the symptom-causing blood stage inside the human host. However, recent incentives in the field call for novel interventions to block parasite transmission from humans to the mosquito vector. Therefore, we need to better understand the parasite biology during its development inside the mosquito, including a deeper understanding of the expression of genes controlling parasite progression during these stages. Here, we have generated single-cell transcriptome data, covering P. falciparum's development, from gamete to ookinete inside the mosquito midgut, uncovering previously untapped parasite biology, including a repertoire of novel biomarkers to be explored in future transmission-blocking efforts. We anticipate that our study provides an important resource, which can be further explored to improve our understanding of the parasite biology as well as aid in guiding future malaria intervention strategies.

13.
Cancers (Basel) ; 15(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36765877

RESUMEN

B cells are multifaceted immune cells responding robustly during immune surveillance against tumor antigens by presentation to T cells and switched immunoglobulin production. However, B cells are unstudied in prostate cancer (PCa). We used flow cytometry to analyze B-cell subpopulations in peripheral blood and lymph nodes from intermediate-high risk PCa patients. B-cell subpopulations were related to clinicopathological factors. B-cell-receptor single-cell sequencing and VDJ analysis identified clonal B-cell expansion in blood and lymph nodes. Pathological staging was pT2 in 16%, pT3a in 48%, and pT3b in 36%. Lymph node metastases occurred in 5/25 patients (20%). Compared to healthy donors, the peripheral blood CD19+ B-cell compartment was significantly decreased in PCa patients and dominated by naïve B cells. The nodal B-cell compartment had significantly increased fractions of CD19+ B cells and switched memory B cells. Plasmablasts were observed in tumor-draining sentinel lymph nodes (SNs). VDJ analysis revealed clonal expansion in lymph nodes. Thus, activated B cells are increased in SNs from PCa patients. The increased fraction of switched memory cells and plasmablasts together with the presence of clonally expanded B cells indicate tumor-specific T-cell-dependent responses from B cells, supporting an important role for B cells in the protection against tumors.

14.
Nat Commun ; 14(1): 2007, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37037810

RESUMEN

Viral tropism within the brain and the role(s) of vertebrate immune response to neurotropic flaviviruses infection is largely understudied. We combine multimodal imaging (cm-nm scale) with single nuclei RNA-sequencing to study Langat virus in wildtype and interferon alpha/beta receptor knockout (Ifnar-/-) mice to visualize viral pathogenesis and define molecular mechanisms. Whole brain viral infection is imaged by Optical Projection Tomography coregistered to ex vivo MRI. Infection is limited to grey matter of sensory systems in wildtype mice, but extends into white matter, meninges and choroid plexus in Ifnar-/- mice. Cells in wildtype display strong type I and II IFN responses, likely due to Ifnb expressing astrocytes, infiltration of macrophages and Ifng-expressing CD8+ NK cells, whereas in Ifnar-/-, the absence of this response contributes to a shift in cellular tropism towards non-activated resident microglia. Multimodal imaging-transcriptomics exemplifies a powerful way to characterize mechanisms of viral pathogenesis and tropism.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Interferón Tipo I , Garrapatas , Ratones , Animales , Interferón Tipo I/metabolismo , Neuronas/metabolismo , Ratones Noqueados , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Tropismo , Garrapatas/metabolismo , Ratones Endogámicos C57BL
15.
Nat Commun ; 14(1): 8410, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110404

RESUMEN

G protein-coupled receptors (GPCRs) mediate responses to various extracellular and intracellular cues. However, the large number of GPCR genes and their substantial functional redundancy make it challenging to systematically dissect GPCR functions in vivo. Here, we employ a CRISPR/Cas9-based approach, disrupting 1654 GPCR-encoding genes in 284 strains and mutating 152 neuropeptide-encoding genes in 38 strains in C. elegans. These two mutant libraries enable effective deorphanization of chemoreceptors, and characterization of receptors for neuropeptides in various cellular processes. Mutating a set of closely related GPCRs in a single strain permits the assignment of functions to GPCRs with functional redundancy. Our analyses identify a neuropeptide that interacts with three receptors in hypoxia-evoked locomotory responses, unveil a collection of regulators in pathogen-induced immune responses, and define receptors for the volatile food-related odorants. These results establish our GPCR and neuropeptide mutant libraries as valuable resources for the C. elegans community to expedite studies of GPCR signaling in multiple contexts.


Asunto(s)
Caenorhabditis elegans , Neuropéptidos , Animales , Caenorhabditis elegans/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/química , Neuropéptidos/genética , Células Quimiorreceptoras , Filogenia
16.
mBio ; 13(3): e0089222, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35532162

RESUMEN

The coronavirus disease 2019, COVID-19, is a complex disease with a wide range of symptoms from asymptomatic infections to severe acute respiratory syndrome with lethal outcome. Individual factors such as age, sex, and comorbidities increase the risk for severe infections, but other aspects, such as genetic variations, are also likely to affect the susceptibility to SARS-CoV-2 infection and disease severity. Here, we used a human 3D lung cell model based on primary cells derived from multiple donors to identity host factors that regulate SARS-CoV-2 infection. With a transcriptomics-based approach, we found that less susceptible donors show a higher expression level of serine protease inhibitors SERPINA1, SERPINE1, and SERPINE2, identifying variation in cellular serpin levels as restricting host factors for SARS-CoV-2 infection. We pinpoint their antiviral mechanism of action to inhibition of the cellular serine protease, TMPRSS2, thereby preventing cleavage of the viral spike protein and TMPRSS2-mediated entry into the target cells. By means of single-cell RNA sequencing, we further locate the expression of the individual serpins to basal, ciliated, club, and goblet cells. Our results add to the importance of genetic variations as determinants for SARS-CoV-2 susceptibility and suggest that genetic deficiencies of cellular serpins might represent risk factors for severe COVID-19. Our study further highlights TMPRSS2 as a promising target for antiviral intervention and opens the door for the usage of locally administered serpins as a treatment against COVID-19. IMPORTANCE Identification of host factors affecting individual SARS-CoV-2 susceptibility will provide a better understanding of the large variations in disease severity and will identify potential factors that can be used, or targeted, in antiviral drug development. With the use of an advanced lung cell model established from several human donors, we identified cellular protease inhibitors, serpins, as host factors that restrict SARS-CoV-2 infection. The antiviral mechanism was found to be mediated by the inhibition of a serine protease, TMPRSS2, which results in a blockage of viral entry into target cells. Potential treatments with these serpins would not only reduce the overall viral burden in the patients, but also block the infection at an early time point, reducing the risk for the hyperactive immune response common in patients with severe COVID-19.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Inhibidores de Serina Proteinasa , Serpinas , Antivirales/farmacología , Humanos , Inhibidor 1 de Activador Plasminogénico , SARS-CoV-2 , Serina Endopeptidasas , Inhibidores de Serina Proteinasa/farmacología , Serpina E2 , Serpinas/genética , Internalización del Virus , alfa 1-Antitripsina
18.
Nucleic Acids Res ; 37(6): 1817-28, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19181702

RESUMEN

A number of studies showed that the development and the lifespan of Caenorhabditis elegans is dependent on mitochondrial function. In this study, we addressed the role of mitochondrial DNA levels and mtDNA maintenance in development of C. elegans by analyzing deletion mutants for mitochondrial polymerase gamma (polg-1(ok1548)). Surprisingly, even though previous studies in other model organisms showed necessity of polymerase gamma for embryonic development, homozygous polg-1(ok1548) mutants had normal development and reached adulthood without any morphological defects. However, polg-1 deficient animals have a seriously compromised gonadal function as a result of severe mitochondrial depletion, leading to sterility and shortened lifespan. Our results indicate that the gonad is the primary site of mtDNA replication, whilst the mtDNA of adult somatic tissues mainly stems from the developing embryo. Furthermore, we show that the mtDNA copy number shows great plasticity as it can be almost tripled as a response to the environmental stimuli. Finally, we show that the mtDNA copy number is an essential limiting factor for the worm development and therefore, a number of mechanisms set to maintain mtDNA levels exist, ensuring a normal development of C. elegans even in the absence of the mitochondrial replicase.


Asunto(s)
Caenorhabditis elegans/embriología , ADN Mitocondrial/biosíntesis , ADN Polimerasa Dirigida por ADN/fisiología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , ADN Polimerasa gamma , Replicación del ADN , ADN Mitocondrial/análisis , ADN Polimerasa Dirigida por ADN/genética , Gónadas/crecimiento & desarrollo , Gónadas/metabolismo , Gónadas/ultraestructura , Longevidad , Mitocondrias/enzimología , Mitocondrias/ultraestructura , Periodicidad , Fenotipo , ARN/análisis , ARN Mitocondrial , Eliminación de Secuencia
19.
Genes (Basel) ; 12(2)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672419

RESUMEN

The reasons for selecting a gene for further study might vary from historical momentum to funding availability, thus leading to unequal attention distribution among all genes. However, certain biological features tend to be overlooked in evaluating a gene's popularity. Here we present a meta-analysis of the reasons why different genes have been studied and to what extent, with a focus on the gene-specific biological features. From unbiased datasets we can define biological properties of genes that reasonably may affect their perceived importance. We make use of both linear and nonlinear computational approaches for estimating gene popularity to then compare their relative importance. We find that roughly 25% of the studies are the result of a historical positive feedback, which we may think of as social reinforcement. Of the remaining features, gene family membership is the most indicative followed by disease relevance and finally regulatory pathway association. Disease relevance has been an important driver until the 1990s, after which the focus shifted to exploring every single gene. We also present a resource that allows one to study the impact of reinforcement, which may guide our research toward genes that have not yet received proportional attention.


Asunto(s)
Biología Computacional , Redes Reguladoras de Genes/genética , Algoritmos , Humanos , Familia de Multigenes/genética
20.
PLoS One ; 16(5): e0251233, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34003838

RESUMEN

The transcription factor Rora has been shown to be important for the development of ILC2 and the regulation of ILC3, macrophages and Treg cells. Here we investigate the role of Rora across CD4+ T cells in general, but with an emphasis on Th2 cells, both in vitro as well as in the context of several in vivo type 2 infection models. We dissect the function of Rora using overexpression and a CD4-conditional Rora-knockout mouse, as well as a RORA-reporter mouse. We establish the importance of Rora in CD4+ T cells for controlling lung inflammation induced by Nippostrongylus brasiliensis infection, and have measured the effect on downstream genes using RNA-seq. Using a systematic stimulation screen of CD4+ T cells, coupled with RNA-seq, we identify upstream regulators of Rora, most importantly IL-33 and CCL7. Our data suggest that Rora is a negative regulator of the immune system, possibly through several downstream pathways, and is under control of the local microenvironment.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Macrófagos/inmunología , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Neumonía/inmunología , Células Th2/inmunología , Animales , Antígenos Helmínticos/inmunología , Antígenos Helmínticos/metabolismo , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/inmunología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Nippostrongylus/inmunología , Neumonía/parasitología , Neumonía/patología , Infecciones por Strongylida/inmunología , Infecciones por Strongylida/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA