Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 142(23): 1972-1984, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-37624902

RESUMEN

Hemophagocytic lymphohistiocytosis (HLH) is characterized by hyperinflammation and multiorgan dysfunction. Infections, including the reactivation of viruses, contribute to significant disease mortality in HLH. Although T-cell and natural killer cell-driven immune activation and dysregulation are well described, limited data exist on the status of B-cell compartment and humoral immune function in HLH. We noted marked suppression of early B-cell development in patients with active HLH. In vitro B-cell differentiation studies after exposure to HLH-defining cytokines, such as interferon gamma (IFN-γ) and tumor necrosis factor, recapitulated B-cell development arrest. Messenger RNA sequencing of human CD34+ cells exposed to IFN-γ demonstrated changes in genes and pathways affecting B-cell development and maturation. In addition, patients with active HLH exhibited a marked decrease in class-switched memory B (CSMB) cells and a decrease in bone marrow plasmablast/plasma cell compartments. The decrease in CSMB cells was associated with a decrease in circulating T follicular helper (cTfh) cells. Finally, lymph node and spleen evaluation in a patient with HLH revealed absent germinal center formation and hemophagocytosis with associated lymphopenia. Reassuringly, the frequency of CSMB and cTfh improved with the control of T-cell activation. Taken together, in patients with active HLH, these changes in B cells may affect the humoral immune response; however, further immune studies are needed to determine its clinical significance.


Asunto(s)
Linfohistiocitosis Hemofagocítica , Humanos , Linfohistiocitosis Hemofagocítica/patología , Citocinas/metabolismo , Interferón gamma/genética , Linfocitos T , Células Asesinas Naturales
2.
Biomacromolecules ; 24(3): 1164-1172, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36745712

RESUMEN

Cytokines act as potent, extracellular signals of the human immune system and can elicit striking treatment responses in patients with autoimmune disease, tissue damage, and cancer. Yet, despite their therapeutic potential, recombinant cytokine-mediated immune responses remain difficult to control as their administration is often systemic, whereas their intended sites of action are localized. To address the challenge of spatially and temporally constraining cytokine signals, we recently devised a strategy whereby recombinant cytokines are reversibly inactivated via chemical modification with photo-labile polymers that respond to visible LED light. Extending this approach to enable both in vivo and multicolor immune activation, here we describe a strategy whereby cytokines appended with heptamethine cyanine-polyethylene glycol are selectively re-activated ex vivo using tissue-penetrating near-infrared (NIR) light. We show that NIR LED light illumination of caged, pro-inflammatory cytokines restores cognate receptor signaling and potentiates the activity of T cell-engager cancer immunotherapies ex vivo. Using combinations of visible- and NIR-responsive cytokines, we further demonstrate multiwavelength optical control of T cell cytolysis ex vivo, as well as the ability to perform Boolean logic using multicolored light and orthogonally photocaged cytokine pairs as inputs and T cell activity as outputs. Together, this work demonstrates a novel approach to control extracellular immune cell signals using light, a strategy that in the future may improve our understanding of and ability to treat cancer and other diseases.


Asunto(s)
Citocinas , Neoplasias , Humanos , Polímeros , Factores Inmunológicos , Polietilenglicoles
3.
Pediatr Blood Cancer ; 70(8): e30405, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37158620

RESUMEN

BACKGROUND: 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) can inhibit tumor proliferation, angiogenesis, and restore apoptosis in preclinical pediatric solid tumor models. We conducted a phase 1 trial to determine the maximum tolerated dose (MTD) of simvastatin with topotecan and cyclophosphamide in children with relapsed/refractory solid and central nervous system (CNS) tumors. METHODS: Simvastatin was administered orally twice daily on days 1-21, with topotecan and cyclophosphamide intravenously on days 1-5 of a 21-day cycle. Four simvastatin dose levels (DLs) were planned, 140 (DL1), 180 (DL2), 225 (DL3), 290 (DL4) mg/m2 /dose, with a de-escalation DL of 100 mg/m2 /dose (DL0) if needed. Pharmacokinetic and pharmacodynamic analyses were performed during cycle 1. RESULTS: The median age of 14 eligible patients was 11.5 years (range: 1-23). The most common diagnoses were neuroblastoma (N = 4) and Ewing sarcoma (N = 3). Eleven dose-limiting toxicity (DLT)-evaluable patients received a median of four cycles (range: 1-6). There were three cycle 1 DLTs: one each grade 3 diarrhea and grade 4 creatine phosphokinase (CPK) elevations at DL1, and one grade 4 CPK elevation at DL0. All patients experienced at least one grade 3/4 hematologic toxicity. Best overall response was partial response in one patient with Ewing sarcoma (DL0) and stable disease for four or more cycles in four patients. Simvastatin exposure increased with higher doses and may have correlated with toxicity. Plasma interleukin 6 (IL-6) concentrations (N = 6) showed sustained IL-6 reductions with decrease to normal values by day 21 in all patients, indicating potential on-target effects. CONCLUSIONS: The MTD of simvastatin with topotecan and cyclophosphamide was determined to be 100 mg/m2 /dose.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Neoplasias , Tumores Neuroectodérmicos Periféricos Primitivos , Sarcoma de Ewing , Humanos , Niño , Lactante , Preescolar , Adolescente , Adulto Joven , Adulto , Topotecan , Simvastatina/efectos adversos , Interleucina-6 , Ciclofosfamida , Neoplasias/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/etiología , Dosis Máxima Tolerada , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
4.
Angiogenesis ; 24(1): 177-190, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33113074

RESUMEN

Integrin activation contributes to key blood cell functions including adhesion, proliferation and migration. An essential step in the cell signaling pathway that activates integrin requires the binding of talin to the ß-integrin cytoplasmic tail. Whereas this pathway is understood in platelets in detail, considerably less is known regarding how integrin-mediated adhesion in endothelium contributes to postnatal angiogenesis. We utilized an inducible EC-specific talin1 knock-out mouse (Tln1 EC-KO) and talin1 L325R knock-in mutant (Tln1 L325R) mouse, in which talin selectively lacks the capacity to activate integrins, to assess the role of integrin activation during angiogenesis. Deletion of talin1 during postnatal days 1-3 (P1-P3) caused lethality by P8 with extensive defects in retinal angiogenesis and widespread hemorrhaging. Tln1 EC-KO mice displayed reduced retinal vascular area, impaired EC sprouting and proliferation relative to Tln1 CTRLs. In contrast, induction of talin1 L325R in neonatal mice resulted in modest defects in retinal angiogenesis and mice survived to adulthood. Interestingly, deletion of talin1 or expression of talin1 L325R in ECs increased MAPK/ERK signaling. Strikingly, B16-F0 tumors grown in Tln1 L325R adult mice were 55% smaller and significantly less vascularized than tumors grown in littermate controls. EC talin1 is indispensable for postnatal development angiogenesis. The role of EC integrin activation appears context-dependent as its inhibition is compatible with postnatal development with mild defects in retinal angiogenesis but results in marked defects in tumor growth and angiogenesis. Inhibiting EC pan-integrin activation may be an effective approach to selectively target tumor blood vessel growth.


Asunto(s)
Células Endoteliales/citología , Integrinas/metabolismo , Neovascularización Fisiológica , Talina/metabolismo , Animales , Animales Recién Nacidos , Proliferación Celular , Células Endoteliales/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones Noqueados , Mutación/genética , Neoplasias/irrigación sanguínea , Neoplasias/patología , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Retina/fisiología , Talina/genética
5.
Proc Natl Acad Sci U S A ; 115(7): E1530-E1539, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29378952

RESUMEN

Activation of the NLRP3 inflammasome induces maturation of IL-1ß and IL-18, both validated targets for treating acute and chronic inflammatory diseases. Here, we demonstrate that OLT1177, an orally active ß-sulfonyl nitrile molecule, inhibits activation of the NLRP3 inflammasome. In vitro, nanomolar concentrations of OLT1177 reduced IL-1ß and IL-18 release following canonical and noncanonical NLRP3 inflammasome activation. The molecule showed no effect on the NLRC4 and AIM2 inflammasomes, suggesting specificity for NLRP3. In LPS-stimulated human blood-derived macrophages, OLT1177 decreased IL-1ß levels by 60% and IL-18 by 70% at concentrations 100-fold lower in vitro than plasma concentrations safely reached in humans. OLT1177 also reduced IL-1ß release and caspase-1 activity in freshly obtained human blood neutrophils. In monocytes isolated from patients with cryopyrin-associated periodic syndrome (CAPS), OLT1177 inhibited LPS-induced IL-1ß release by 84% and 36%. Immunoprecipitation and FRET analysis demonstrated that OLT1177 prevented NLRP3-ASC, as well as NLRP3-caspase-1 interaction, thus inhibiting NLRP3 inflammasome oligomerization. In a cell-free assay, OLT1177 reduced ATPase activity of recombinant NLRP3, suggesting direct targeting of NLRP3. Mechanistically, OLT1177 did not affect potassium efflux, gene expression, or synthesis of the IL-1ß precursor. Steady-state levels of phosphorylated NF-κB and IkB kinase were significantly lowered in spleen cells from OLT1177-treated mice. We observed reduced IL-1ß content in tissue homogenates, limited oxidative stress, and increased muscle oxidative metabolism in OLT1177-treated mice challenged with LPS. Healthy humans receiving 1,000 mg of OLT1177 daily for 8 d exhibited neither adverse effects nor biochemical or hematological changes.


Asunto(s)
Antiinflamatorios/farmacología , Inflamasomas/antagonistas & inhibidores , Inflamación/prevención & control , Macrófagos/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nitrilos/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Caspasa 1/metabolismo , Células Cultivadas , Humanos , Inflamación/inducido químicamente , Inflamación/inmunología , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos/toxicidad , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Nitrilos/química , Nitrilos/uso terapéutico
6.
BMC Public Health ; 19(1): 703, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31174505

RESUMEN

BACKGROUND: In an effort to complement the current chemotherapy based schistosomiasis control interventions in Shinyanga district, community knowledge, perceptions and water contact practices were qualitatively assessed using focus group discussions and semi structured interviews involving 271 participants in one S. haematobium prevalent community of Ikingwamanoti village, Shinyanga district, Northwestern, Tanzania. METHODS: In October, 2016 we conducted 29 parent semi structured interviews and 16 focus group discussions with a total of 168 parent informants. Adult participants were conveniently selected from three sub-villages of Butini, Miyu, and Bomani of Ikingwamanoti village, Shinyanga district. In March, 2017, a total of 103 children informants participated in 10 focus group discussions and 20 semi structured interviews, administered to children from standard four, five, six and seven attending Ikingwamanoti Primary School. Note taking and digital recorders were used to collect narrative data for thematic analysis of emergent themes. RESULTS: Among participants, 75% parents and 50% children considered urinary schistosomiasis as a low priority health problem. Of the informants, 70% children and 48.3% parents had misconceptions about the cause, modes of transmission and control of schistosomiasis demonstrating gaps in their biomedical knowledge of the disease. Assessment of treatment seeking behavior for urinary schistosomiasis revealed a combination of traditional and modern health care sectors. However, modern medicines were considered effective in the treatment of urinary schistosomiasis. Lack of alternative sources of water for domestic and recreational activities and unhygienic water use habits exposed community members to high risk of acquiring urinary schistosomiasis. CONCLUSION: Use of Schistosoma haematobium contaminated water sources for daily domestic and recreational use facilitated contraction of urinary schistosomiasis among community members in Shinyanga district. People's perceptions of urinary schistosomiasis as a less priority health problem promoted persistence of the disease. Future efforts to control urinary schistosomiasis should take into account integrated approaches combining water, sanitation and hygiene, health education, alternative sources of clean and safe water to facilitate behavior change.


Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Higiene , Padres/psicología , Aceptación de la Atención de Salud/psicología , Schistosoma haematobium , Esquistosomiasis Urinaria/psicología , Adolescente , Adulto , Animales , Niño , Estudios Transversales , Transmisión de Enfermedad Infecciosa , Femenino , Grupos Focales , Humanos , Masculino , Percepción , Prevalencia , Investigación Cualitativa , Saneamiento , Esquistosomiasis Urinaria/epidemiología , Esquistosomiasis Urinaria/transmisión , Tanzanía/epidemiología , Agua
7.
Haematologica ; 102(12): 1985-1994, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28883079

RESUMEN

While dietary folate deficiency is associated with increased risk for birth defects and other diseases, evidence suggests that supplementation with folic acid can contribute to predisposition to some diseases, including immune dysfunction and cancer. Herein, we show that diets supplemented with folic acid both below and above the recommended levels led to significantly altered metabolism in multiple tissues in mice. Surprisingly, both low and excessive dietary folate induced similar metabolic changes, which were particularly evident for nucleotide biosynthetic pathways in B-progenitor cells. Diet-induced metabolic changes in these cells partially phenocopied those observed in mice treated with anti-folate drugs, suggesting that both deficiency and excessive levels of dietary folic acid compromise folate-dependent biosynthetic pathways. Both folate deficiency and excessive dietary folate levels compromise hematopoiesis, resulting in defective cell cycle progression, persistent DNA damage, and impaired production of lymphocytes. These defects reduce the reconstitution potential in transplantation settings and increase radiation-induced mortality. We conclude that excessive folic acid supplementation can metabolically mimic dietary folate insufficiency, leading to similar functional impairment of hematopoiesis.


Asunto(s)
Suplementos Dietéticos/efectos adversos , Deficiencia de Ácido Fólico/metabolismo , Ácido Fólico/farmacología , Hematopoyesis/efectos de los fármacos , Animales , Ácido Fólico/metabolismo , Ácido Fólico/uso terapéutico , Metabolismo/efectos de los fármacos , Ratones , Nucleótidos/biosíntesis , Células Precursoras de Linfocitos B/efectos de los fármacos , Células Precursoras de Linfocitos B/metabolismo
8.
BMC Cancer ; 15: 123, 2015 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-25884547

RESUMEN

BACKGROUND: Inflammatory cytokines in the colonic microenvironment have been shown to increase with advance colorectal cancer disease state. However, the contribution of inflammatory cytokines to pre-malignant disease, such as the formation of adenomas, is unclear. METHODS: Using the Milliplex® MAP Human Cytokine/ Chemokine Magnetic Bead Panel Immunoassay, serum cytokine and chemokine profiles were assayed among participants without an adenoma (n = 97) and those with an adenoma (n = 97) enrolled in the NCI-funded Insulin Resistance Atherosclerosis Colon Study. The concentrations of interleukin-10 (IL-10), IL-1ß, IL-6, IL-17A, IL-2, IL-4, IL-7, IL-12(p70), interferon-γ (IFN-γ), macrophage chemoattractant protein-1 (MCP-1), regulated on activation, normal T cell expressed and secreted (RANTES), tumor necrosis factor-alpha (TNF-α), vascular endothelial growth factor (VEGF), granulocyte macrophage colony-stimulating factor (GM-CSF), and macrophage inflammatory protein-1ß (MIP-1ß) were determined. Multiple logistic regression analyses were used to evaluate the association between adenoma prevalence and cytokine levels. RESULTS: The presence of colorectal adenomas was not associated with significant increases in the systemic levels of proinflammatory (TNF-α, IL-6, IL-1ß) or T-cell polarizing (IL-12, IL-2, IL-10, IL-4, IL-17, IFN-γ) cytokines. Furthermore, MCP-1 and RANTES levels were equivalent in the serum of study participants with and without adenomas. CONCLUSIONS: These findings suggest colorectal adenoma prevalence may not be associated with significant alterations in systemic inflammation.


Asunto(s)
Adenoma/sangre , Biomarcadores de Tumor/sangre , Neoplasias Colorrectales/sangre , Citocinas/sangre , Mediadores de Inflamación/sangre , Adenoma/diagnóstico , Anciano , Estudios de Casos y Controles , Estudios de Cohortes , Neoplasias Colorrectales/diagnóstico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
9.
bioRxiv ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38352441

RESUMEN

Obesity is a major public health crisis given its rampant growth and association with an increased risk for cancer. Interestingly, patients with obesity tend to have an increased tumor burden and decreased T-cell function. It remains unclear how obesity compromises T-cell mediated immunity. To address this question, we modeled the adipocyte niche using the secretome released from adipocytes as well as the niche of stromal cells and investigated how these factors modulated T-cell function. We found that the secretomes altered antigen-specific T-cell receptor (TCR) triggering and activation. RNA-sequencing analysis identified thousands of gene targets modulated by the secretome including those associated with cytoskeletal regulation and actin polymerization. We next used molecular force probes to show that T-cells exposed to the adipocyte niche display dampened force transmission to the TCR-antigen complex and conversely, stromal cell secreted factors lead to significantly enhanced TCR forces. These results were then validated in diet-induced obese mice. Importantly, secretome-mediated TCR force modulation mirrored the changes in T-cell functional responses in human T-cells using the FDA-approved immunotherapy, blinatumomab. Thus, this work shows that the adipocyte niche contributes to T-cell dysfunction through cytoskeletal modulation and reduces TCR triggering by dampening TCR forces consistent with the mechanosensor model of T-cell activation.

10.
J Clin Invest ; 134(10)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530357

RESUMEN

Despite widespread utilization of immunotherapy, treating immune-cold tumors remains a challenge. Multiomic analyses and experimental validation identified the OTUD4/CD73 proteolytic axis as a promising target in treating immune-suppressive triple negative breast cancer (TNBC). Mechanistically, deubiquitylation of CD73 by OTUD4 counteracted its ubiquitylation by TRIM21, resulting in CD73 stabilization inhibiting tumor immune responses. We further demonstrated the importance of TGF-ß signaling for orchestrating the OTUD4/CD73 proteolytic axis within tumor cells. Spatial transcriptomics profiling discovered spatially resolved features of interacting malignant and immune cells pertaining to expression levels of OTUD4 and CD73. In addition, ST80, a newly developed inhibitor, specifically disrupted proteolytic interaction between CD73 and OTUD4, leading to reinvigoration of cytotoxic CD8+ T cell activities. In preclinical models of TNBC, ST80 treatment sensitized refractory tumors to anti-PD-L1 therapy. Collectively, our findings uncover what we believe to be a novel strategy for targeting the immunosuppressive OTUD4/CD73 proteolytic axis in treating immune-suppressive breast cancers with the inhibitor ST80.


Asunto(s)
5'-Nucleotidasa , Proteolisis , Neoplasias de la Mama Triple Negativas , Animales , Femenino , Humanos , Ratones , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/inmunología , 5'-Nucleotidasa/antagonistas & inhibidores , Línea Celular Tumoral , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas de Neoplasias/inmunología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Ubiquitinación , Proteasas Ubiquitina-Específicas
11.
Proc Natl Acad Sci U S A ; 107(50): 21713-8, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21098275

RESUMEN

Aging is associated with the functional decline of cells, tissues, and organs. At the same time, age is the single most important prognostic factor in the development of most human cancers, including chronic myelogenous and acute lymphoblastic leukemias initiated by Bcr-Abl oncogenic translocations. Prevailing paradigms attribute the association between aging and cancers to the accumulation of oncogenic mutations over time, because the accrual of oncogenic events is thought to be the rate-limiting step in initiation and progression of cancers. Conversely, aging-associated functional decline caused by both cell-autonomous and non-cell-autonomous mechanisms is likely to reduce the fitness of stem and progenitor cell populations. This reduction in fitness should be conducive for increased selection of oncogenic mutations that can at least partially alleviate fitness defects, thereby promoting the initiation of cancers. We tested this hypothesis using mouse hematopoietic models. Our studies indicate that the dramatic decline in the fitness of aged B-lymphopoiesis coincides with altered receptor-associated kinase signaling. We further show that Bcr-Abl provides a much greater competitive advantage to old B-lymphoid progenitors compared with young progenitors, coinciding with restored kinase signaling pathways, and that this enhanced competitive advantage translates into increased promotion of Bcr-Abl-driven leukemias. Moreover, impairing IL-7-mediated signaling is sufficient to promote selection for Bcr-Abl-expressing B progenitors. These studies support an unappreciated causative link between aging and cancer: increased selection of oncogenic mutations as a result of age-dependent alterations of the fitness landscape.


Asunto(s)
Envejecimiento/fisiología , Aptitud Genética , Células Madre Hematopoyéticas/fisiología , Leucemia/fisiopatología , Linfopoyesis/fisiología , Células Madre/fisiología , Animales , Trasplante de Médula Ósea , Femenino , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Células Madre Hematopoyéticas/citología , Humanos , Interleucina-7/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Transducción de Señal/fisiología
12.
Cancer Res Commun ; 3(7): 1248-1259, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37465593

RESUMEN

Siglec-15 (Sig15) has been implicated as an immune checkpoint expressed in solid tumor-infiltrating macrophages and is being targeted in clinical trials with mAbs to normalize the tumor immune microenvironment and stimulate antitumor immunity. However, the role of Sig15 in hematologic malignancies remains undefined. Sig15 mRNA and protein expression levels in hematologic malignancies were determined from publicly available databases, cell lines, and primary patient samples. Human B-cell acute lymphoblastic leukemia (B-ALL) cell lines were used to identify signaling pathways involved in the regulation of Sig15 expression. Secreted/soluble Sig15 and cytokine levels were measured from the plasma of children with leukemia and healthy controls. Knockdown and knockout of Siglec15 in a murine model of B-ALL was used to evaluate the effect of leukemia-derived Sig15 on the immune response to leukemia. We observed pathologic overexpression of Sig15 in a variety of hematologic malignancies, including primary B-ALL samples. This overexpression was driven by NFκB activation, which also increased the surface localization of Sig15. Secreted/soluble Sig15 was found to circulate at elevated levels in the plasma of children with B-ALL and correlated with an immune-suppressive cytokine milieu. Genetic inhibition of Sig15 in murine B-ALL promoted clearance of the leukemia by the immune system and a marked reversal of the immune-privileged leukemia bone marrow niche, including expanded early effector CD8+ T cells and reduction of immunosuppressive cytokines. Thus, Sig15 is a novel, potent immunosuppressive molecule active in leukemia that may be targeted therapeutically to activate T lymphocytes against leukemia cells. Significance: We demonstrate that Sig15 is overexpressed in hematologic malignancies driven by NFκB, is required for immune evasion in a mouse model of leukemia, and, for the first time, that it circulates at high levels in the plasma of children with leukemia.


Asunto(s)
Linfoma de Burkitt , Neoplasias Hematológicas , Leucemia , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Animales , Niño , Humanos , Ratones , Inmunidad Adaptativa , Linfocitos T CD8-positivos , Citocinas , Inmunoglobulinas , Proteínas de la Membrana , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Microambiente Tumoral/genética
13.
J Natl Cancer Inst Monogr ; 2023(61): 12-29, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37139973

RESUMEN

The obesity pandemic currently affects more than 70 million Americans and more than 650 million individuals worldwide. In addition to increasing susceptibility to pathogenic infections (eg, SARS-CoV-2), obesity promotes the development of many cancer subtypes and increases mortality rates in most cases. We and others have demonstrated that, in the context of B-cell acute lymphoblastic leukemia (B-ALL), adipocytes promote multidrug chemoresistance. Furthermore, others have demonstrated that B-ALL cells exposed to the adipocyte secretome alter their metabolic states to circumvent chemotherapy-mediated cytotoxicity. To better understand how adipocytes impact the function of human B-ALL cells, we used a multi-omic RNA-sequencing (single-cell and bulk transcriptomic) and mass spectroscopy (metabolomic and proteomic) approaches to define adipocyte-induced changes in normal and malignant B cells. These analyses revealed that the adipocyte secretome directly modulates programs in human B-ALL cells associated with metabolism, protection from oxidative stress, increased survival, B-cell development, and drivers of chemoresistance. Single-cell RNA sequencing analysis of mice on low- and high-fat diets revealed that obesity suppresses an immunologically active B-cell subpopulation and that the loss of this transcriptomic signature in patients with B-ALL is associated with poor survival outcomes. Analyses of sera and plasma samples from healthy donors and those with B-ALL revealed that obesity is associated with higher circulating levels of immunoglobulin-associated proteins, which support observations in obese mice of altered immunological homeostasis. In all, our multi-omics approach increases our understanding of pathways that may promote chemoresistance in human B-ALL and highlight a novel B-cell-specific signature in patients associated with survival outcomes.


Asunto(s)
COVID-19 , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Animales , Ratones , Proteómica , SARS-CoV-2 , Obesidad/complicaciones , Obesidad/metabolismo
14.
Cancer Cell Int ; 12(1): 19, 2012 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-22631225

RESUMEN

BACKGROUND: Although the peptidyl-prolyl isomerase, cyclophilin-A (peptidyl-prolyl isomerase, PPIA), has been studied for decades in the context of its intracellular functions, its extracellular roles as a major contributor to both inflammation and multiple cancers have more recently emerged. A wide range of activities have been ascribed to extracellular PPIA that include induction of cytokine and matrix metalloproteinase (MMP) secretion, which potentially underlie its roles in inflammation and tumorigenesis. However, there have been conflicting reports as to which particular signaling events are under extracellular PPIA regulation, which may be due to either cell-dependent responses and/or the use of commercial preparations recently shown to be highly impure. METHODS: We have produced and validated the purity of recombinant PPIA in order to subject it to a comparative analysis between different cell types. Specifically, we have used a combination of multiple methods such as luciferase reporter screens, translocation assays, phosphorylation assays, and nuclear magnetic resonance to compare extracellular PPIA activities in several different cell lines that included epithelial and monocytic cells. RESULTS: Our findings have revealed that extracellular PPIA activity is cell type-dependent and that PPIA signals via multiple cellular receptors beyond the single transmembrane receptor previously identified, Extracellular Matrix MetalloPRoteinase Inducer (EMMPRIN). Finally, while our studies provide important insight into the cell-specific responses, they also indicate that there are consistent responses such as nuclear factor kappa B (NFκB) signaling induced in all cell lines tested. CONCLUSIONS: We conclude that although extracellular PPIA activates several common pathways, it also targets different receptors in different cell types, resulting in a complex, integrated signaling network that is cell type-specific.

15.
Front Cell Dev Biol ; 10: 909557, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060800

RESUMEN

The world's population with obesity is reaching pandemic levels. If current trends continue, it is predicted that there will be 1.5 billion people with obesity by 2030. This projection is alarming due to the association of obesity with numerous diseases including cancer, with recent studies demonstrating a positive association with acute myeloid leukemia (AML) and B cell acute lymphoblastic leukemia (B-ALL). Interestingly, several epidemiological studies suggest the converse relationship may exist in patients with T cell acute lymphoblastic leukemia (T-ALL). To determine the relationship between obesity and T-ALL development, we employed the diet-induced obesity (DIO) murine model and cultured human T-ALL cells in adipocyte-conditioned media (ACM), bone marrow stromal cell-conditioned media, stromal conditioned media (SCM), and unconditioned media to determine the functional impact of increased adiposity on leukemia progression. Whereas only 20% of lean mice transplanted with T-ALL cells survived longer than 3 months post-inoculation, 50%-80% of obese mice with leukemia survived over this same period. Furthermore, culturing human T-ALL cells in ACM resulted in increased histone H3 acetylation (K9/K14/K18/K23/K27) and methylation (K4me3 and K27me3) posttranslational modifications (PTMs), which preceded accelerated cell cycle progression, DNA damage, and cell death. Adipocyte-mediated epigenetic changes in human T-ALL cells were recapitulated with the H3K27 demethylase inhibitor GSK-J4 and the pan-HDAC inhibitor vorinostat. These drugs were also highly cytotoxic to human T-ALL cells at low micromolar concentrations. In summary, our data support epidemiological studies demonstrating that adiposity suppresses T-ALL pathogenesis. We present data demonstrating that T-ALL cell death in adipose-rich microenvironments is induced by epigenetic modifications, which are not tolerated by leukemia cells. Similarly, GSK-J4 and vorinostat treatment induced epigenomic instability and cytotoxicity profiles that phenocopied the responses of human T-ALL cells to ACM, which provides additional support for the use of epigenetic modifying drugs as a treatment option for T-ALL.

16.
Sci Rep ; 12(1): 11870, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831470

RESUMEN

Immunotherapies have revolutionized the treatment of B-cell acute lymphoblastic leukemia (B-ALL), but the duration of responses is still sub-optimal. We sought to identify mechanisms of immune suppression in B-ALL and strategies to overcome them. Plasma collected from children with B-ALL with measurable residual disease after induction chemotherapy showed differential cytokine expression, particularly IL-7, while single-cell RNA-sequencing revealed the expression of genes associated with immune exhaustion in immune cell subsets. We also found that the supernatant of leukemia cells suppressed T-cell function ex vivo. Modeling B-ALL in mice, we observed an altered tumor immune microenvironment, including compromised activation of T-cells and dendritic cells (DC). However, recombinant IL-12 (rIL-12) treatment of mice with B-ALL restored the levels of several pro-inflammatory cytokines and chemokines in the bone marrow and increased the number of splenic and bone marrow resident T-cells and DCs. RNA-sequencing of T-cells isolated from vehicle and rIL-12 treated mice with B-ALL revealed that the leukemia-induced increase in genes associated with exhaustion, including Lag3, Tigit, and Il10, was abrogated with rIL-12 treatment. In addition, the cytolytic capacity of T-cells co-cultured with B-ALL cells was enhanced when IL-12 and blinatumomab treatments were combined. Overall, these results demonstrate that the leukemia immune suppressive microenvironment can be restored with rIL-12 treatment which has direct therapeutic implications.


Asunto(s)
Interleucina-12 , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animales , Médula Ósea/metabolismo , Citocinas/metabolismo , Células Dendríticas , Interleucina-12/genética , Interleucina-12/metabolismo , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , ARN/metabolismo , Microambiente Tumoral
17.
Exp Hematol ; 112-113: 24-34, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35803545

RESUMEN

Germline mutations in ETV6 are associated with a syndrome of thrombocytopenia and leukemia predisposition, and ETV6 is among the most commonly mutated genes in leukemias, especially childhood B-cell acute lymphoblastic leukemia. However, the mechanisms underlying disease caused by ETV6 dysfunction are poorly understood. To address these gaps in knowledge, using CRISPR/Cas9, we developed a mouse model of the most common recurrent, disease-causing germline mutation in ETV6. We found defects in hematopoiesis related primarily to abnormalities of the multipotent progenitor population 4 (MPP4) subset of hematopoietic progenitor cells and evidence of sterile inflammation. Expression of ETV6 in Ba/F3 cells altered the expression of several cytokines, some of which were also detected at higher levels in the bone marrow of the mice with Etv6 mutation. Among these, interleukin-18 and interleukin-13 abrogated B-cell development of sorted MPP4 cells, but not common lymphoid progenitors, suggesting that inflammation contributes to abnormal hematopoiesis by impairing lymphoid development. These data, along with those from humans, support a model in which ETV6 dysfunction promotes inflammation, which adversely affects thrombopoiesis and promotes leukemogenesis.


Asunto(s)
Mutación de Línea Germinal , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Proto-Oncogénicas c-ets , Animales , Células Germinativas/metabolismo , Humanos , Inflamación/genética , Ratones , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Represoras/genética , Trombopoyesis , Proteína ETS de Variante de Translocación 6
18.
Nat Commun ; 13(1): 1157, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241678

RESUMEN

The incidence of obesity is rising with greater than 40% of the world's population expected to be overweight or suffering from obesity by 2030. This is alarming because obesity increases mortality rates in patients with various cancer subtypes including leukemia. The survival differences between lean patients and patients with obesity are largely attributed to altered drug pharmacokinetics in patients receiving chemotherapy; whereas, the direct impact of an adipocyte-enriched microenvironment on cancer cells is rarely considered. Here we show that the adipocyte secretome upregulates the surface expression of Galectin-9 (GAL-9) on human B-acute lymphoblastic leukemia cells (B-ALL) which promotes chemoresistance. Antibody-mediated targeting of GAL-9 on B-ALL cells induces DNA damage, alters cell cycle progression, and promotes apoptosis in vitro and significantly extends the survival of obese but not lean mice with aggressive B-ALL. Our studies reveal that adipocyte-mediated upregulation of GAL-9 on B-ALL cells can be targeted with antibody-based therapies to overcome obesity-induced chemoresistance.


Asunto(s)
Linfoma de Burkitt , Galectinas , Obesidad , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animales , Apoptosis , Linfoma de Burkitt/tratamiento farmacológico , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patología , Línea Celular Tumoral , Galectinas/metabolismo , Humanos , Ratones , Obesidad/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Microambiente Tumoral/fisiología
19.
Trop Med Infect Dis ; 7(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35051117

RESUMEN

The objective of this pilot malacological survey was to identify the snail intermediate hosts for Schistosoma haematobium in endemic rural and semi-urban areas of Gabon. Snails were collected, morphologically identified, and tested for infection by cercarial shedding. Released cercariae were morphologically identified using low-power light microscopy. A total of six species of snails were collected throughout the study area, with Bulinus truncatus, B. forskalii, and Potadoma spp. being the most predominant species collected. Only the Bulinus species were tested for infection by cercarial shedding, of which only B. truncatus shed cercariae. Some B. truncatus shed mammalian schistosome cercariae, while others shed Gymnocephalus cercariae. Our results indicate that B. truncatus appears to be a potential intermediate host of schistosomiasis in Gabon, where cases of S. haematobium, S. guineensis, and S. intercalatum infection are reported. However, it will be important to further understand the species diversity and transmission dynamics of schistosomes.

20.
Aging Cell ; 20(2): e13309, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33480151

RESUMEN

Aging-associated declines in innate and adaptive immune responses are well documented and pose a risk for the growing aging population, which is predicted to comprise greater than 40 percent of the world's population by 2050. Efforts have been made to improve immunity in aged populations; however, safe and effective protocols to accomplish this goal have not been universally established. Aging-associated chronic inflammation is postulated to compromise immunity in aged mice and humans. Interleukin-37 (IL-37) is a potent anti-inflammatory cytokine, and we present data demonstrating that IL-37 gene expression levels in human monocytes significantly decline with age. Furthermore, we demonstrate that transgenic expression of interleukin-37 (IL-37) in aged mice reduces or prevents aging-associated chronic inflammation, splenomegaly, and accumulation of myeloid cells (macrophages and dendritic cells) in the bone marrow and spleen. Additionally, we show that IL-37 expression decreases the surface expression of programmed cell death protein 1 (PD-1) and augments cytokine production from aged T-cells. Improved T-cell function coincided with a youthful restoration of Pdcd1, Lat, and Stat4 gene expression levels in CD4+ T-cells and Lat in CD8+ T-cells when aged mice were treated with recombinant IL-37 (rIL-37) but not control immunoglobin (Control Ig). Importantly, IL-37-mediated rejuvenation of aged endogenous T-cells was also observed in aged chimeric antigen receptor (CAR) T-cells, where improved function significantly extended the survival of mice transplanted with leukemia cells. Collectively, these data demonstrate the potency of IL-37 in boosting the function of aged T-cells and highlight its therapeutic potential to overcome aging-associated immunosenescence.


Asunto(s)
Envejecimiento , Tratamiento Basado en Trasplante de Células y Tejidos , Interleucina-1/inmunología , Receptores Quiméricos de Antígenos/inmunología , Animales , Línea Celular , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA