Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci Res ; 102(6): e25360, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38847288

RESUMEN

Childhood obesity increases the risk of health and cognitive disorders in adulthood. Consuming high-fat diets (HFD) during critical neurodevelopmental periods, like childhood, impairs cognition and memory in humans and animals, affecting the function and connectivity of brain structures related to emotional memory. However, the underlying mechanisms of such phenomena need to be better understood. This study aimed to investigate the neurochemical profile of the amygdala and hippocampus, brain structures involved in emotional memory, during the acquisition of conditioned odor aversion in male rats that consumed a HFD from weaning to adulthood. The rats gained weight, experienced metabolic changes, and reduced insulin sensitivity and glucose tolerance. Rats showed enhanced odor aversion memory, contrary to the expected cognitive impairments. This memory enhancement was accompanied by increased noradrenergic and glutamatergic neurotransmission in the amygdala and hippocampus. Importantly, this upregulation was specific to stimuli exposure, as basal neurotransmitter levels remained unaltered by the HFD. Our results suggest that HFD modifies cognitive function by altering neurochemical signaling, in this case, upregulating neurotransmitter levels rendering a stronger memory trace, demonstrating that metabolic dysfunctions do not only trigger exclusively detrimental plasticity processes but also render enhanced plastic effects depending on the type of information.


Asunto(s)
Amígdala del Cerebelo , Dieta Alta en Grasa , Ácido Glutámico , Hipocampo , Transmisión Sináptica , Animales , Masculino , Dieta Alta en Grasa/efectos adversos , Hipocampo/metabolismo , Amígdala del Cerebelo/metabolismo , Transmisión Sináptica/fisiología , Ratas , Ácido Glutámico/metabolismo , Norepinefrina/metabolismo , Ratas Wistar , Cognición/fisiología , Reacción de Prevención/fisiología
2.
Physiol Behav ; 254: 113910, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35820628

RESUMEN

Childhood and adolescent exposure to obesogenic environments has contributed to the development of several health disorders, including neurocognitive impairment. Adolescence is a critical neurodevelopmental window highly influenced by environmental factors that affect brain function until adulthood. Post-weaning chronic exposure to a high-fat diet (HFD) adversely affects memory performance; physical activity is one approach to coping with these dysfunctions. Previous studies indicate that voluntary exercise prevents HFD's detrimental effects on memory; however, it remains to evaluate whether it has a remedial/therapeutical effect when introduced after a long-term HFD exposure. This study was conducted on a diet-induced obesity mice model over six months. After three months of HFD exposure (without interrupting the diet) access to voluntary physical activity was provided. HFD produced weight gain, increased adiposity, and impaired glucose tolerance. Voluntary physical exercise ameliorated glucose tolerance and halted weight gain and fat accumulation. Additionally, physical activity mitigated HFD-induced spatial and recognition memory impairments. Our data indicate that voluntary physical exercise starting after several months of periadolescent HFD exposure reverses metabolic and cognitive alterations demonstrating that voluntary exercise, in addition to its known preventive effect, also has a restorative impact on metabolism and cognition dysfunctions associated with obesity.


Asunto(s)
Dieta Alta en Grasa , Trastornos de la Memoria , Animales , Dieta Alta en Grasa/efectos adversos , Ejercicio Físico , Trastornos de la Memoria/etiología , Trastornos de la Memoria/prevención & control , Ratones , Obesidad , Destete , Aumento de Peso
3.
Psychoneuroendocrinology ; 127: 105178, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33706043

RESUMEN

Increasing evidence suggests that long-term consumption of high-caloric diets increases the risk of developing cognitive dysfunctions. In the present study, we assessed the catecholaminergic activity in the hippocampus as a modulatory mechanism that is altered in rats exposed to six months of a high-sucrose diet (HSD). Male Wistar rats fed with this diet developed a metabolic disorder and showed impaired spatial memory in both water maze and object location memory (OLM) tasks. Intrahippocampal free-movement microdialysis showed a diminished dopaminergic and noradrenergic response to object exploration during OLM acquisition compared to rats fed with normal diet. In addition, electrophysiological results revealed an impaired long-term potentiation (LTP) of the perforant to dentate gyrus pathway in rats exposed to a HSD. Local administration of nomifensine, a catecholaminergic reuptake inhibitor, prior to OLM acquisition or LTP induction, improved long-term memory and electrophysiological responses, respectively. These results suggest that chronic exposure to HSD induces a hippocampal deterioration which impacts on cognitive and neural plasticity events negatively; these impairments can be ameliorated by increasing or restituting the affected catecholaminergic activity.


Asunto(s)
Catecolaminas , Sacarosa en la Dieta , Hipocampo , Animales , Catecolaminas/fisiología , Sacarosa en la Dieta/efectos adversos , Hipocampo/fisiopatología , Potenciación a Largo Plazo/fisiología , Masculino , Trastornos de la Memoria/fisiopatología , Ratas , Ratas Wistar , Memoria Espacial/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA