Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nat Ecol Evol ; 7(9): 1408-1418, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37550510

RESUMEN

Habitat specialization underpins biological processes from species distributions to speciation. However, organisms are often described as specialists or generalists based on a single niche axis, despite facing complex, multidimensional environments. Here, we analysed 236 environmental soil microbiomes across the United States and demonstrate that 90% of >1,200 prokaryotes followed one of two trajectories: specialization on all niche axes (multidimensional specialization) or generalization on all axes (multidimensional generalization). We then documented that this pervasive multidimensional specialization/generalization had many ecological and evolutionary consequences. First, multidimensional specialization and generalization are highly conserved with very few transitions between these two trajectories. Second, multidimensional generalists dominated communities because they were 73 times more abundant than specialists. Lastly, multidimensional specialists played important roles in community structure with ~220% more connections in microbiome networks. These results indicate that multidimensional generalization and specialization are evolutionarily stable with multidimensional generalists supporting larger populations and multidimensional specialists playing important roles within communities, probably stemming from their overrepresentation among pollutant detoxifiers and nutrient cyclers. Taken together, we demonstrate that the vast majority of soil prokaryotes are restricted to one of two multidimensional niche trajectories, multidimensional specialization or multidimensional generalization, which then has far-reaching consequences for evolutionary transitions, microbial dominance and community roles.


Asunto(s)
Evolución Biológica , Microbiota , Especialización
2.
Mycologia ; 115(6): 739-748, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37812522

RESUMEN

Habitat heterogeneity is a key driver of biodiversity of macroorganisms, yet how heterogeneity structures belowground microbial communities is not well understood. Importantly, belowground microbial communities may respond to any number of abiotic, biotic, and spatial drivers found in heterogeneous environments. Here, we examine potential drivers of prokaryotic and fungal communities in soils across the heterogenous landscape of the imperiled Florida scrub, a pyrogenic ecosystem where slight differences in elevation lead to large changes in water and nutrient availability and vegetation composition. We employ a comprehensive, large-scale sampling design to characterize the communities of prokaryotes and fungi associated with three habitat types and two soil depths (crust and subterranean) to evaluate (i) differences in microbial communities across these heterogeneous habitats, (ii) the relative roles of abiotic, biotic, and spatial drivers in shaping community structure, and (iii) the distribution of fungal guilds across these habitats. We sequenced soils from 40 complete replicates of habitat × soil depth combinations and sequenced the prokaryotic 16S and fungal internal transcribed spacer (ITS) regions using Illumina MiSeq. Habitat heterogeneity generated distinct communities of soil prokaryotes and fungi. Spatial distance played a role in structuring crust communities, whereas subterranean microbial communities were primarily structured by the shrub community, whose roots they presumably interacted with. This result helps to explain the unexpected transition we observed between arbuscular mycorrhiza-dominated soils at low-elevation habitats to ectomycorrhiza-dominated soils at high-elevation habitats. Our results challenge previous notions of environmental determinism of microbial communities and generate new hypotheses regarding symbiotic relationships across heterogeneous environments.


Asunto(s)
Microbiota , Micorrizas , Ecosistema , Hongos/genética , Biodiversidad , Raíces de Plantas/microbiología , Suelo/química , Microbiología del Suelo
3.
ISME J ; 15(6): 1722-1734, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33452480

RESUMEN

Environmental stress is increasing worldwide, yet we lack a clear picture of how stress disrupts the stability of microbial communities and the ecosystem services they provide. Here, we present the first evidence that naturally-occurring microbiomes display network properties characteristic of unstable communities when under persistent stress. By assessing changes in diversity and structure of soil microbiomes along 40 replicate stress gradients (elevation/water availability gradients) in the Florida scrub ecosystem, we show that: (1) prokaryotic and fungal diversity decline in high stress, and (2) two network properties of stable microbial communities-modularity and negative:positive cohesion-have a clear negative relationship with environmental stress, explaining 51-78% of their variation. Interestingly, pathogenic taxa/functional guilds decreased in relative abundance along the stress gradient, while oligotrophs and mutualists increased, suggesting that the shift in negative:positive cohesion could result from decreasing negative:positive biotic interactions consistent with the predictions of the Stress Gradient Hypothesis. Given the crucial role microbiomes play in ecosystem functions, our results suggest that, by limiting the compartmentalization of microbial associations and creating communities dominated by positive associations, increasing stress in the Anthropocene could destabilize microbiomes and undermine their ecosystem services.


Asunto(s)
Ecosistema , Microbiota , Biodiversidad , Hongos/genética , Suelo , Microbiología del Suelo
4.
Curr Opin Plant Biol ; 56: 28-36, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32247158

RESUMEN

All plants host diverse microbial assemblages that shape plant health, productivity, and function. While some microbial effects are attributable to particular symbionts, interactions among plant-associated microbes can nonadditively affect plant fitness and traits in ways that cannot be predicted from pairwise interactions. Recent research into tripartite plant-microbe mutualisms has provided crucial insight into this nonadditivity and the mechanisms underlying plant interactions with multiple microbes. Here, we discuss how interactions among microbial mutualists affect plant performance, highlight consequences of biotic and abiotic context-dependency for nonadditive outcomes, and summarize burgeoning efforts to determine the molecular bases of how plants regulate establishment, resource exchange, and maintenance of tripartite interactions. We conclude with four goals for future tripartite studies that will advance our overall understanding of complex plant-microbial interactions.


Asunto(s)
Plantas , Simbiosis , Interacciones Microbianas , Plantas/genética
5.
Free Radic Res ; 48(11): 1342-54, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25119790

RESUMEN

The potential protective effect of the dietary antioxidant curcumin (120 mg/Kg/day for 6 days) against the renal injury induced by maleate was evaluated. Tubular proteinuria and oxidative stress were induced by a single injection of maleate (400 mg/kg) in rats. Maleate-induced renal injury included increase in renal vascular resistance and in the urinary excretion of total protein, glucose, sodium, neutrophil gelatinase-associated lipocalin (NGAL) and N-acetyl ß-D-glucosaminidase (NAG), upregulation of kidney injury molecule (KIM)-1, decrease in renal blood flow and claudin-2 expression besides of necrosis and apoptosis of tubular cells on 24 h. Oxidative stress was determined by measuring the oxidation of lipids and proteins and diminution in renal Nrf2 levels. Studies were also conducted in renal epithelial LLC-PK1 cells and in mitochondria isolated from kidneys of all the experimental groups. Maleate induced cell damage and reactive oxygen species (ROS) production in LLC-PK1 cells in culture. In addition, maleate treatment reduced oxygen consumption in ADP-stimulated mitochondria and diminished respiratory control index when using malate/glutamate as substrate. The activities of both complex I and aconitase were also diminished. All the above-described alterations were prevented by curcumin. It is concluded that curcumin is able to attenuate in vivo maleate-induced nephropathy and in vitro cell damage. The in vivo protection was associated to the prevention of oxidative stress and preservation of mitochondrial oxygen consumption and activity of respiratory complex I, and the in vitro protection was associated to the prevention of ROS production.


Asunto(s)
Curcumina/farmacología , Complejo I de Transporte de Electrón/metabolismo , Hemodinámica/efectos de los fármacos , Enfermedades Renales/prevención & control , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Aldehído Reductasa/antagonistas & inhibidores , Animales , Antiinflamatorios no Esteroideos/farmacología , Apoptosis/efectos de los fármacos , Biomarcadores/análisis , Western Blotting , Complejo I de Transporte de Electrón/efectos de los fármacos , Inhibidores Enzimáticos/toxicidad , Enfermedades Renales/inducido químicamente , Células LLC-PK1 , Peroxidación de Lípido/efectos de los fármacos , Masculino , Maleatos/toxicidad , Mitocondrias/metabolismo , Oxidación-Reducción , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA