Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(1): e17113, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273578

RESUMEN

Seagrass is an important natural attribute of 28 World Heritage (WH) properties. These WH seagrass habitats provide a wide range of services to adjacent ecosystems and human communities, and are one of the largest natural carbon sinks on the planet. Climate change is considered the greatest and fastest-growing threat to natural WH properties and evidence of climate-related impacts on seagrass habitats has been growing. The main objective of this study was to assess the vulnerability of WH seagrass habitats to location-specific key climate stressors. Quantitative surveys of seagrass experts and site managers were used to assess exposure, sensitivity and adaptive capacity of WH seagrass habitats to climate stressors, following the Climate Vulnerability Index approach. Over half of WH seagrass habitats have high vulnerability to climate change, mainly from the long-term increase in sea-surface temperature and short-term marine heatwaves. Potential impacts from climate change and certainty scores associated with them were higher than reported by a similar survey-based study from 10 years prior, indicating a shift in stakeholder perspectives during the past decade. Additionally, seagrass experts' opinions on the cumulative impacts of climate and direct-anthropogenic stressors revealed that high temperature in combination with high suspended sediments, eutrophication and hypoxia is likely to provoke a synergistic cumulative (negative) impact (p < .05). A key component contributing to the high vulnerability assessments was the low adaptive capacity; however, discrepancies between adaptive capacity scores and qualitative responses suggest that managers of WH seagrass habitats might not be adequately equipped to respond to climate change impacts. This thematic assessment provides valuable information to help prioritize conservation actions, monitoring activities and research in WH seagrass habitats. It also demonstrates the utility of a systematic framework to evaluate the vulnerability of thematic groups of protected areas that share a specific attribute.


Asunto(s)
Cambio Climático , Ecosistema , Humanos , Temperatura , Secuestro de Carbono , Eutrofización
2.
Ecol Appl ; 34(4): e2961, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522943

RESUMEN

Ecological forecasts are becoming increasingly valuable tools for conservation and management. However, there are few examples of near-real-time forecasting systems that account for the wide range of ecological complexities. We developed a new coral disease ecological forecasting system that explores a suite of ecological relationships and their uncertainty and investigates how forecast skill changes with shorter lead times. The Multi-Factor Coral Disease Risk product introduced here uses a combination of ecological and marine environmental conditions to predict the risk of white syndromes and growth anomalies across reefs in the central and western Pacific and along the east coast of Australia and is available through the US National Oceanic and Atmospheric Administration Coral Reef Watch program. This product produces weekly forecasts for a moving window of 6 months at a resolution of ~5 km based on quantile regression forests. The forecasts show superior skill at predicting disease risk on withheld survey data from 2012 to 2020 compared with predecessor forecast systems, with the biggest improvements shown for predicting disease risk at mid- to high-disease levels. Most of the prediction uncertainty arises from model uncertainty, so prediction accuracy and precision do not improve substantially with shorter lead times. This result arises because many predictor variables cannot be accurately forecasted, which is a common challenge across ecosystems. Weekly forecasts and scenarios can be explored through an online decision support tool and data explorer, co-developed with end-user groups to improve use and understanding of ecological forecasts. The models provide near-real-time disease risk assessments and allow users to refine predictions and assess intervention scenarios. This work advances the field of ecological forecasting with real-world complexities and, in doing so, better supports near-term decision making for coral reef ecosystem managers and stakeholders. Secondarily, we identify clear needs and provide recommendations to further enhance our ability to forecast coral disease risk.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Medición de Riesgo/métodos , Predicción , Conservación de los Recursos Naturales/métodos , Australia , Monitoreo del Ambiente/métodos , Modelos Biológicos
3.
Nature ; 556(7702): 492-496, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29670282

RESUMEN

Global warming is rapidly emerging as a universal threat to ecological integrity and function, highlighting the urgent need for a better understanding of the impact of heat exposure on the resilience of ecosystems and the people who depend on them 1 . Here we show that in the aftermath of the record-breaking marine heatwave on the Great Barrier Reef in 2016 2 , corals began to die immediately on reefs where the accumulated heat exposure exceeded a critical threshold of degree heating weeks, which was 3-4 °C-weeks. After eight months, an exposure of 6 °C-weeks or more drove an unprecedented, regional-scale shift in the composition of coral assemblages, reflecting markedly divergent responses to heat stress by different taxa. Fast-growing staghorn and tabular corals suffered a catastrophic die-off, transforming the three-dimensionality and ecological functioning of 29% of the 3,863 reefs comprising the world's largest coral reef system. Our study bridges the gap between the theory and practice of assessing the risk of ecosystem collapse, under the emerging framework for the International Union for Conservation of Nature (IUCN) Red List of Ecosystems 3 , by rigorously defining both the initial and collapsed states, identifying the major driver of change, and establishing quantitative collapse thresholds. The increasing prevalence of post-bleaching mass mortality of corals represents a radical shift in the disturbance regimes of tropical reefs, both adding to and far exceeding the influence of recurrent cyclones and other local pulse events, presenting a fundamental challenge to the long-term future of these iconic ecosystems.


Asunto(s)
Antozoos/crecimiento & desarrollo , Arrecifes de Coral , Calentamiento Global , Animales , Antozoos/clasificación , Australia , Calor/efectos adversos , Dinámica Poblacional
4.
Nature ; 543(7645): 373-377, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28300113

RESUMEN

During 2015-2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year. Water quality and fishing pressure had minimal effect on the unprecedented bleaching in 2016, suggesting that local protection of reefs affords little or no resistance to extreme heat. Similarly, past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. Consequently, immediate global action to curb future warming is essential to secure a future for coral reefs.


Asunto(s)
Antozoos/metabolismo , Arrecifes de Coral , Calentamiento Global/estadística & datos numéricos , Animales , Australia , Clorofila/metabolismo , Clorofila A , Conservación de los Recursos Naturales/tendencias , Calentamiento Global/prevención & control , Agua de Mar/análisis , Temperatura
5.
Bioessays ; 43(9): e2100048, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34351637

RESUMEN

Coral bleaching has impacted reefs worldwide and the predictions of near-annual bleaching from over two decades ago have now been realized. While technology currently provides the means to predict large-scale bleaching, predicting reef-scale and within-reef patterns in real-time for all reef users is limited. In 2020, heat stress across the Great Barrier Reef underpinned the region's third bleaching event in 5 years. Here we review the heterogeneous emergence of bleaching across Heron Island reef habitats and discuss the oceanographic drivers that underpinned variable bleaching emergence. We do so as a case study to highlight how reef end-user groups who engage with coral reefs in different ways require targeted guidance for how, and when, to alter their use of coral reefs in response to bleaching events. Our case study of coral bleaching emergence demonstrates how within-reef scale nowcasting of coral bleaching could aid the development of accessible and equitable bleaching response strategies on coral reefs. Also see the video abstract here: https://youtu.be/N9Tgb8N-vN0.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Cambio Climático , Ecosistema , Respuesta al Choque Térmico
6.
Dis Aquat Organ ; 154: 15-31, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37260163

RESUMEN

Declining coral populations worldwide place a special premium on identifying risks and drivers that precipitate these declines. Understanding the relationship between disease outbreaks and their drivers can help to anticipate when the risk of a disease pandemic is high. Populations of the iconic branching Caribbean elkhorn coral Acropora palmata have collapsed in recent decades, in part due to white pox disease (WPX). To assess the role that biotic and abiotic factors play in modulating coral disease, we present a predictive model for WPX in A. palmata using 20 yr of disease surveys from the Florida Keys plus environmental information collected simultaneously in situ and via satellite. We found that colony size was the most influential predictor for WPX occurrence, with larger colonies being at higher risk. Water quality parameters of dissolved oxygen saturation, total organic carbon, dissolved inorganic nitrogen, and salinity were implicated in WPX likelihood. Both low and high wind speeds were identified as important environmental drivers of WPX. While high temperature has been identified as an important cause of coral mortality in both bleaching and disease scenarios, our model indicates that the relative influence of HotSpot (positive summertime temperature anomaly) was low and actually inversely related to WPX risk. The predictive model developed here can contribute to enabling targeted strategic management actions and disease surveillance, enabling managers to treat the disease or mitigate disease drivers, thereby suppressing the disease and supporting the persistence of corals in an era of myriad threats.


Asunto(s)
Antozoos , Animales , Arrecifes de Coral , Florida/epidemiología , Región del Caribe/epidemiología , Factores de Riesgo
7.
Glob Chang Biol ; 28(14): 4229-4250, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35475552

RESUMEN

The global impacts of climate change are evident in every marine ecosystem. On coral reefs, mass coral bleaching and mortality have emerged as ubiquitous responses to ocean warming, yet one of the greatest challenges of this epiphenomenon is linking information across scientific disciplines and spatial and temporal scales. Here we review some of the seminal and recent coral-bleaching discoveries from an ecological, physiological, and molecular perspective. We also evaluate which data and processes can improve predictive models and provide a conceptual framework that integrates measurements across biological scales. Taking an integrative approach across biological and spatial scales, using for example hierarchical models to estimate major coral-reef processes, will not only rapidly advance coral-reef science but will also provide necessary information to guide decision-making and conservation efforts. To conserve reefs, we encourage implementing mesoscale sanctuaries (thousands of km2 ) that transcend national boundaries. Such networks of protected reefs will provide reef connectivity, through larval dispersal that transverse thermal environments, and genotypic repositories that may become essential units of selection for environmentally diverse locations. Together, multinational networks may be the best chance corals have to persist through climate change, while humanity struggles to reduce emissions of greenhouse gases to net zero.


Asunto(s)
Antozoos , Cambio Climático , Animales , Antozoos/fisiología , Arrecifes de Coral , Ecosistema
8.
J Environ Manage ; 301: 113919, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34731944

RESUMEN

Coral bleaching has increasingly impacted reefs worldwide over the past four decades. Despite almost 40 years of research into the mechanistic, physiological, ecological, biophysical and climatic drivers of coral bleaching, metrics to allow comparison between ecological observations and experimental simulations still do not exist. Here we describe a novel metric - experimental Degree Heating Week (eDHW) - with which to standardise the persistently variable thermal conditions employed across experimental studies of coral bleaching by modify the widely used Degree Heating Week (DHW) metric used in ecological studies to standardise cumulative heat loading.


Asunto(s)
Antozoos , Calor , Animales , Arrecifes de Coral
9.
Conserv Biol ; 35(2): 598-609, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32681546

RESUMEN

Managing human use of ecosystems in an era of rapid environmental change requires an understanding of diverse stakeholders' behaviors and perceptions to enable effective prioritization of actions to mitigate multiple threats. Specifically, research examining how threat perceptions are shared or diverge among stakeholder groups and how these can evolve through time is increasingly important. We investigated environmental threat perceptions related to Australia's Great Barrier Reef and explored their associations before and after consecutive years of mass coral bleaching. We used data from surveys of commercial fishers, tourism operators, and coastal residents (n = 5254) conducted in 2013 and 2017. Threats perceived as most serious differed substantially among groups before bleaching but were strongly aligned after bleaching. Climate change became the most frequently reported threat by all stakeholder groups following the coral bleaching events, and perceptions of fishing and poor water quality as threats also ranked high. Within each of the 3 stakeholder groups, fishers, tourism operators, and coastal residents, the prioritization of these 3 threats tended to diverge in 2013, but convergence occurred after bleaching. These results indicate an emergence of areas of agreement both within and across stakeholder groups. Changes in perceptions were likely influenced by high-profile environmental-disturbance events and media representations of threats. Our results provide insights into the plasticity of environmental-threat perceptions and highlight how their convergence in response to major events may create new opportunities for strategic public engagement and increasing support for management.


Convergencia de la Percepción de las Amenazas Ambientales por los Actores Sociales después del Blanqueamiento Masivo del Coral de la Gran Barrera Arrecifal Resumen La administración del uso que las personas dan a los ecosistemas en una época de cambios ambientales rápidos requiere un entendimiento del comportamiento de diferentes actores sociales y sus percepciones para facilitar la priorización de las acciones que mitigan a las múltiples amenazas. Específicamente, las investigaciones que examinan cómo se comparten o difieren las percepciones de las amenazas entre los grupos de actores y cómo estas percepciones pueden evolucionar con el tiempo son cada vez más importantes. Investigamos las percepciones de las amenazas ambientales relacionadas con la Gran Barrera Arrecifal en Australia y exploramos sus asociaciones antes y después de varios años consecutivos de blanqueamiento masivo del coral. Usamos datos tomados de encuestas realizadas a pescadores comerciales, operadores turísticos y residentes de la costa (n = 5,254) en 2013 y 2017. Las amenazas percibidas como las más serias difirieron sustancialmente entre los tres grupos antes del blanqueamiento, pero se alinearon marcadamente después del blanqueamiento. El cambio climático se convirtió en la amenaza reportada con mayor frecuencia por todos los grupos de actores después de los eventos de blanqueamiento del coral. Las percepciones de la pesca y la baja calidad del agua como amenazas también tuvieron una clasificación alta. Dentro de cada uno de los tres grupos de actores (pescadores, operadores turísticos y residentes de la costa) la priorización de estas tres amenazas tendió a diferir en 2013 pero la convergencia ocurrió después del blanqueamiento. Estos resultados indican un surgimiento de áreas de acuerdo dentro y entre los grupos de actores. Los cambios en las percepciones probablemente estuvieron influenciados por eventos de perturbación ambiental de alto perfil y la representación mediática de las amenazas. Nuestros resultados proporcionaron conocimiento sobre la plasticidad de las percepciones de las amenazas ambientales y resalta cómo su convergencia en la respuesta a los eventos más importantes puede crear nuevas oportunidades para la participación estratégica del público e incrementar el apoyo para su manejo.


Asunto(s)
Antozoos , Animales , Cambio Climático , Conservación de los Recursos Naturales , Arrecifes de Coral , Ecosistema , Humanos , Percepción
10.
Bioessays ; 41(7): e1800226, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31215669

RESUMEN

If we are to ensure the persistence of species in an increasingly warm world, of interest is the identification of drivers that affect the ability of an organism to resist thermal stress. Underpinning any organism's capacity for resistance is a complex interplay between biological and physical factors occurring over multiple scales. Tropical coral reefs are a unique system, in that their function is dependent upon the maintenance of a coral-algal symbiosis that is directly disrupted by increases in water temperature. A number of physical factors have been identified as affecting the biological responses of the coral organism under broadscale thermal anomalies. One such factor is water flow, which is capable of modulating both organismal metabolic functioning and thermal environments. Understanding the physiological and hydrodynamic drivers of organism response to thermal stress improves predictive capabilities and informs targeted management responses, thereby increasing the resilience of reefs into the future.


Asunto(s)
Antozoos/fisiología , Arrecifes de Coral , Calentamiento Global , Hidrodinámica , Estrés Fisiológico/fisiología , Animales , Clima , Calor , Océanos y Mares , Simbiosis/fisiología
11.
Proc Biol Sci ; 286(1912): 20191718, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31594507

RESUMEN

Outbreaks of marine infectious diseases have caused widespread mass mortalities, but the lack of baseline data has precluded evaluating whether disease is increasing or decreasing in the ocean. We use an established literature proxy method from Ward and Lafferty (Ward and Lafferty 2004 PLoS Biology2, e120 (doi:10.1371/journal.pbio.0020120)) to analyse a 44-year global record of normalized disease reports from 1970 to 2013. Major marine hosts are combined into nine taxonomic groups, from seagrasses to marine mammals, to assess disease swings, defined as positive or negative multi-decadal shifts in disease reports across related hosts. Normalized disease reports increased significantly between 1970 and 2013 in corals and urchins, indicating positive disease swings in these environmentally sensitive ectotherms. Coral disease reports in the Caribbean correlated with increasing temperature anomalies, supporting the hypothesis that warming oceans drive infectious coral diseases. Meanwhile, disease risk may also decrease in a changing ocean. Disease reports decreased significantly in fishes and elasmobranchs, which have experienced steep human-induced population declines and diminishing population density that, while concerning, may reduce disease. The increases and decreases in disease reports across the 44-year record transcend short-term fluctuations and regional variation. Our results show that long-term changes in disease reports coincide with recent decades of widespread environmental change in the ocean.


Asunto(s)
Organismos Acuáticos/fisiología , Ecosistema , Animales , Antozoos , Región del Caribe , Cambio Climático , Peces , Océanos y Mares , Densidad de Población , Temperatura
12.
Ecology ; 100(2): e02574, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30645776

RESUMEN

This data compilation synthesizes 36 static environmental and spatial variables, and temporally explicit modeled estimates of three major disturbances to coral cover on the Great Barrier Reef (GBR): (1) coral bleaching, (2) tropical cyclones, and (3) outbreaks of the coral-eating crown-of-thorns starfish Acanthaster cf. solaris. Data are provided on a standardized grid (0.01° × 0.01° ~ 1 × 1 km) for reef locations along the GBR, containing 15,928 pixels and excluding the northernmost sections (<12° S) where empirical data were sparse. This compilation provides a consistent and high-resolution characterization of the abiotic environment and disturbance regimes for GBR reef locations at a fine spatial scale to be used in the development of complex ecosystem models. Static estimates of environmental variables (e.g., depth, bed shear stress, average temperature, temperature variation) originally developed by the Commonwealth of Australia's Environment Research Facility (CERF) Marine Biodiversity Hub were provided by Geoscience Australia. Annual (1985-2017) disturbance estimates were either interpolated from empirical data (A. cf. solaris), predicted from proxy indicators (e.g., degree heating weeks [DHW] as a proxy for bleaching severity), or explicitly modeled (e.g., wave height model for each cyclone). This data set synthesizes some of the most recent advances in remote sensing and modeling of environmental conditions on the GBR; yet it is not exhaustive and we highlight areas that should be expanded through future research. The characterization of abiotic and disturbance regimes presented here represent an essential tool for the development of complex regional scale models of the GBR; preventing redundancy between working groups and promoting collaboration, innovation, and consistency. When using the data set, we kindly request that you cite this article and/or the articles cited in the reference section, recognizing the work that went into compiling the data together and the original authors' willingness to make it publicly available.

13.
Glob Chang Biol ; 25(11): 3918-3931, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31472029

RESUMEN

Environmental anomalies that trigger adverse physiological responses and mortality are occurring with increasing frequency due to climate change. At species' range peripheries, environmental anomalies are particularly concerning because species often exist at their environmental tolerance limits and may not be able to migrate to escape unfavourable conditions. Here, we investigated the bleaching response and mortality of 14 coral genera across high-latitude eastern Australia during a global heat stress event in 2016. We evaluated whether the severity of assemblage-scale and genus-level bleaching responses was associated with cumulative heat stress and/or local environmental history, including long-term mean temperatures during the hottest month of each year (SSTLTMAX ), and annual fluctuations in water temperature (SSTVAR ) and solar irradiance (PARZVAR ). The most severely-bleached genera included species that were either endemic to the region (Pocillopora aliciae) or rare in the tropics (e.g. Porites heronensis). Pocillopora spp., in particular, showed high rates of immediate mortality. Bleaching severity of Pocillopora was high where SSTLTMAX was low or PARZVAR was high, whereas bleaching severity of Porites was directly associated with cumulative heat stress. While many tropical Acropora species are extremely vulnerable to bleaching, the Acropora species common at high latitudes, such as A. glauca and A. solitaryensis, showed little incidence of bleaching and immediate mortality. Two other regionally-abundant genera, Goniastrea and Turbinaria, were also largely unaffected by the thermal anomaly. The severity of assemblage-scale bleaching responses was poorly explained by the environmental parameters we examined. Instead, the severity of assemblage-scale bleaching was associated with local differences in species abundance and taxon-specific bleaching responses. The marked taxonomic disparity in bleaching severity, coupled with high mortality of high-latitude endemics, point to climate-driven simplification of assemblage structures and progressive homogenisation of reef functions at these high-latitude locations.


Asunto(s)
Antozoos , Animales , Australia , Cambio Climático , Arrecifes de Coral , Refugio de Fauna , Temperatura
14.
J Environ Manage ; 233: 291-301, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30583103

RESUMEN

Resilience underpins the sustainability of both ecological and social systems. Extensive loss of reef corals following recent mass bleaching events have challenged the notion that support of system resilience is a viable reef management strategy. While resilience-based management (RBM) cannot prevent the damaging effects of major disturbances, such as mass bleaching events, it can support natural processes that promote resistance and recovery. Here, we review the potential of RBM to help sustain coral reefs in the 21st century. We explore the scope for supporting resilience through existing management approaches and emerging technologies and discuss their opportunities and limitations in a changing climate. We argue that for RBM to be effective in a changing world, reef management strategies need to involve both existing and new interventions that together reduce stress, support the fitness of populations and species, and help people and economies to adapt to a highly altered ecosystem.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Clima , Ecosistema
15.
Proc Biol Sci ; 283(1830)2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27170709

RESUMEN

Coral spawning times have been linked to multiple environmental factors; however, to what extent these factors act as generalized cues across multiple species and large spatial scales is unknown. We used a unique dataset of coral spawning from 34 reefs in the Indian and Pacific Oceans to test if month of spawning and peak spawning month in assemblages of Acropora spp. can be predicted by sea surface temperature (SST), photosynthetically available radiation, wind speed, current speed, rainfall or sunset time. Contrary to the classic view that high mean SST initiates coral spawning, we found rapid increases in SST to be the best predictor in both cases (month of spawning: R(2) = 0.73, peak: R(2) = 0.62). Our findings suggest that a rapid increase in SST provides the dominant proximate cue for coral mass spawning over large geographical scales. We hypothesize that coral spawning is ultimately timed to ensure optimal fertilization success.


Asunto(s)
Antozoos/fisiología , Animales , Arrecifes de Coral , Océano Índico , Océano Pacífico , Fotosíntesis , Lluvia , Reproducción , Estaciones del Año , Análisis Espacio-Temporal , Luz Solar , Temperatura , Viento
16.
Glob Chang Biol ; 21(1): 48-61, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25196132

RESUMEN

Cumulative pressures from global climate and ocean change combined with multiple regional and local-scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio-economic settings, we present an Adaptive Resilience-Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press-type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse-type (acute) stressors (e.g. storms, bleaching events, crown-of-thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo-Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on-the-ground solutions are likely to focus increasingly on actions that support resilience at finer spatial scales, and that are tightly linked to ecosystem goods and services.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales/métodos , Arrecifes de Coral , Ecosistema , Ambiente , Modelos Teóricos , Océanos y Mares
17.
Sci Adv ; 10(26): eadn9660, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38924396

RESUMEN

Spatial and temporal patterns of future coral bleaching are uncertain, hampering global conservation efforts to protect coral reefs against climate change. Our analysis of daily projections of ocean warming establishes the severity, annual duration, and onset of severe bleaching risk for global coral reefs this century, pinpointing vital climatic refugia. We show that low-latitude coral regions are most vulnerable to thermal stress and will experience little reprieve from climate mitigation. By 2080, coral bleaching is likely to start on most reefs in spring, rather than late summer, with year-round bleaching risk anticipated to be high for some low-latitude reefs regardless of global efforts to mitigate harmful greenhouse gasses. By identifying Earth's reef regions that are at lowest risk of accelerated bleaching, our results will prioritize efforts to limit future loss of coral reef biodiversity.


Asunto(s)
Antozoos , Cambio Climático , Arrecifes de Coral , Animales , Blanqueamiento de los Corales , Conservación de los Recursos Naturales , Biodiversidad , Calentamiento Global
18.
Mar Pollut Bull ; 208: 117037, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39366064

RESUMEN

Nearshore coral reefs face an increasing abundance of fleshy macroalgae, an indicator of degradation and threat to ecosystem functioning. Removal of macroalgae is proposed to assist coral recovery, though the ecological and physical impacts have not been studied. Nearshore reefs are also confronted with sedimentation stress, influencing reef dynamics including algal turfs, with flow-on impacts to coral recruitment, fish diets, and trophic cascades. In this study, the interplay between macroalgal canopies, sediment deposition and algal turf environments was investigated on the nearshore Great Barrier Reef. Removal of fleshy macroalgae over two years had no significant effect on the amount or composition of sediment deposited on proxy coral (SedPods) and algal turf (TurfPods) surfaces, nor was the height of algal turfs impacted. Deposition on TurfPods was greater with high-energy currents, likely due to retention of sediment within turfs. Therefore, macroalgae removal is unlikely to exacerbate nor alleviate sediment-related stress on benthic communities.


Asunto(s)
Antozoos , Arrecifes de Coral , Sedimentos Geológicos , Algas Marinas , Algas Marinas/fisiología , Sedimentos Geológicos/química , Animales , Antozoos/fisiología , Ecosistema , Monitoreo del Ambiente
19.
Environ Manage ; 49(1): 1-13, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22042407

RESUMEN

Predicted increases in coral disease outbreaks associated with climate change have implications for coral reef ecosystems and the people and industries that depend on them. It is critical that coral reef managers understand these implications and have the ability to assess and reduce risk, detect and contain outbreaks, and monitor and minimise impacts. Here, we present a coral disease response framework that has four core components: (1) an early warning system, (2) a tiered impact assessment program, (3) scaled management actions and (4) a communication plan. The early warning system combines predictive tools that monitor the risk of outbreaks of temperature-dependent coral diseases with in situ observations provided by a network of observers who regularly report on coral health and reef state. Verified reports of an increase in disease prevalence trigger a tiered response of more detailed impact assessment, targeted research and/or management actions. The response is scaled to the risk posed by the outbreak, which is a function of the severity and spatial extent of the impacts. We review potential management actions to mitigate coral disease impacts and facilitate recovery, considering emerging strategies unique to coral disease and more established strategies to support reef resilience. We also describe approaches to communicating about coral disease outbreaks that will address common misperceptions and raise awareness of the coral disease threat. By adopting this framework, managers and researchers can establish a community of practice and can develop response plans for the management of coral disease outbreaks based on local needs. The collaborations between managers and researchers we suggest will enable adaptive management of disease impacts following evaluating the cost-effectiveness of emerging response actions and incrementally improving our understanding of outbreak causation.


Asunto(s)
Antozoos/fisiología , Conservación de los Recursos Naturales/métodos , Arrecifes de Coral , Animales , Cambio Climático , Ecosistema
20.
PLoS One ; 16(5): e0251616, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33956878

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0061974.].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA