Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell ; 177(2): 478-491.e20, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30929901

RESUMEN

Genomic studies have identified hundreds of candidate genes near loci associated with risk for schizophrenia. To define candidates and their functions, we mutated zebrafish orthologs of 132 human schizophrenia-associated genes. We created a phenotype atlas consisting of whole-brain activity maps, brain structural differences, and profiles of behavioral abnormalities. Phenotypes were diverse but specific, including altered forebrain development and decreased prepulse inhibition. Exploration of these datasets identified promising candidates in more than 10 gene-rich regions, including the magnesium transporter cnnm2 and the translational repressor gigyf2, and revealed shared anatomical sites of activity differences, including the pallium, hypothalamus, and tectum. Single-cell RNA sequencing uncovered an essential role for the understudied transcription factor znf536 in the development of forebrain neurons implicated in social behavior and stress. This phenotypic landscape of schizophrenia-associated genes prioritizes more than 30 candidates for further study and provides hypotheses to bridge the divide between genetic association and biological mechanism.


Asunto(s)
Esquizofrenia/genética , Esquizofrenia/fisiopatología , Animales , Encéfalo , Corteza Cerebral , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Pez Cebra/genética
2.
J Exp Biol ; 224(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34115116

RESUMEN

Navigating across light gradients is essential for survival for many animals. However, we still have a poor understanding of the algorithms that underlie such behaviors. Here, we developed a novel closed-loop phototaxis assay for Drosophila larvae in which light intensity is always spatially uniform but updates depending on the location of the animal in the arena. Even though larvae can only rely on temporal cues during runs, we find that they are capable of finding preferred areas of low light intensity. Further detailed analysis of their behavior reveals that larvae turn more frequently and that heading angle changes increase when they experience brightness increments over extended periods of time. We suggest that temporal integration of brightness change during runs is an important - and so far largely unexplored - element of phototaxis.


Asunto(s)
Drosophila , Fototaxis , Animales , Conducta Animal , Señales (Psicología) , Drosophila melanogaster , Larva , Luz
3.
bioRxiv ; 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37034630

RESUMEN

Olfactory sensory neurons (OSNs) are constantly exposed to pathogens, including viruses. However, serious brain infection via the olfactory route rarely occurs. When OSNs detect a virus, they coordinate local antiviral immune responses to stop virus progression to the brain. Despite effective immune control in the olfactory periphery, pathogen-triggered neuronal signals reach the CNS via the olfactory bulb (OB). We hypothesized that neuronal detection of a virus by OSNs initiates neuroimmune responses in the OB that prevent pathogen invasion. Using zebrafish ( Danio rerio ) as a model, we demonstrate viral-specific neuronal activation of OSNs projecting into the OB, indicating that OSNs are electrically activated by viruses. Further, behavioral changes are seen in both adult and larval zebrafish after viral exposure. By profiling the transcription of single cells in the OB after OSNs are exposed to virus, we found that both microglia and neurons enter a protective state. Microglia and macrophage populations in the OB respond within minutes of nasal viral delivery followed decreased expression of neuronal differentiation factors and enrichment of genes in the neuropeptide signaling pathway in neuronal clusters. Pituitary adenylate-cyclase-activating polypeptide ( pacap ), a known antimicrobial, was especially enriched in a neuronal cluster. We confirm that PACAP is antiviral in vitro and that PACAP expression increases in the OB 1 day post-viral treatment. Our work reveals how encounters with viruses in the olfactory periphery shape the vertebrate brain by inducing antimicrobial programs in neurons and by altering host behavior.

4.
Nat Commun ; 13(1): 2573, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35545618

RESUMEN

Animal brains have evolved to encode social stimuli and transform these representations into advantageous behavioral responses. The commonalities and differences of these representations across species are not well-understood. Here, we show that social isolation activates an oxytocinergic (OXT), nociceptive circuit in the larval zebrafish hypothalamus and that chemical cues released from conspecific animals are potent modulators of this circuit's activity. We delineate an olfactory to subpallial pathway that transmits chemical social cues to OXT circuitry, where they are transformed into diverse outputs simultaneously regulating avoidance and feeding behaviors. Our data allow us to propose a model through which social stimuli are integrated within a fundamental neural circuit to mediate diverse adaptive behaviours.


Asunto(s)
Reacción de Prevención , Pez Cebra , Animales , Apetito , Conducta Animal , Larva/fisiología , Conducta Social , Aislamiento Social , Pez Cebra/metabolismo
5.
Am J Phys Anthropol ; 146(4): 594-608, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21989964

RESUMEN

Over the past 500 years, the Bahamas has been influenced by a wide array of settlers, some of whom have left marked genetic imprints throughout the archipelago. To assess the extent of each group's genetic contributions, high-resolution Y-chromosome analyses were performed, for the first time, to delineate the patriarchal ancestry of six islands in the Northwest (Abaco and Grand Bahama) and Central (Eleuthera, Exuma, Long Island, and New Providence) Bahamas and their genetic relationships with previously published reference populations. Our results reveal genetic signals emanating primarily from African and European sources, with the predominantly sub-Saharan African and Western European haplogroups E1b1a-M2 and R1b1b1-M269, respectively, accounting for greater than 75% of all Bahamian patrilineages. Surprisingly, we observe notable discrepancies among the six Bahamian populations in their distribution of these lineages, with E1b1a-M2 predominating Y-chromosomes in the collections from Abaco, Exuma, Eleuthera, Grand Bahama, and New Providence, whereas R1b1b1-M269 is found at elevated levels in the Long Island population. Substantial Y-STR haplotype variation within sub-haplogroups E1b1a7a-U174 and E1b1ba8-U175 (greater than any continental African collection) is also noted, possibly indicating genetic influences from a variety of West and Central African groups. Furthermore, differential European genetic contributions in each island (with the exception of Exuma) reflect settlement patterns of the British Loyalists subsequent to the American Revolution.


Asunto(s)
Población Negra/genética , Cromosomas Humanos Y , Población Blanca/genética , África , Bahamas , Europa (Continente) , Flujo Génico , Haplotipos , Humanos , Masculino , Repeticiones de Microsatélite , Filogenia , Filogeografía
6.
Am J Phys Anthropol ; 146(2): 171-8, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21826633

RESUMEN

The archeology and ethnology of Armenia suggest that this region has acted as a crossroads for human migrations from Europe and the Middle East since at least the Neolithic. Near continual foreign influx has, in turn, led to the supposition that the gene pools of geographically separated Armenian populations may have diverged as differing historical influences potentially left distinct genetic traces in the various regions of the Armenian plateau. In this study, we seek to address whether any evidence for such genetic regional partitioning in Armenians exists by analyzing, for the first time, 15 autosomal short tandem repeat (STR) loci in 404 Armenians from four geographically well-characterized collections (Ararat Valley, Gardman, Sasun, and Lake Van) that represent distinct communities from across Historical Armenia. In addition, to determine whether genetic differences among these four Armenian populations are the result of differential affinities to populations of known historical influence in Armenia, we utilize 27 biogeographically targeted reference populations for phylogenetic and admixture analyses. From these examinations, we find that while close genetic affiliations exist between the two easternmost Armenian groups analyzed, Ararat Valley and Gardman, the remaining two populations display substantial distinctions. In particular, Sasun is distinguished by evidence for genetic contributions from Turkey, while a stronger Balkan component is detected in Lake Van, potentially suggestive of remnant genetic influences from ancient Greek and Phrygian populations in this region.


Asunto(s)
Pueblo Asiatico/genética , Variación Genética , Repeticiones de Microsatélite , Población Blanca/genética , Armenia , Distribución de Chi-Cuadrado , Genética de Población , Humanos , Filogenia
7.
Curr Biol ; 31(4): 782-793.e3, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33338431

RESUMEN

Salinity levels constrain the habitable environment of all aquatic organisms. Zebrafish are freshwater fish that cannot tolerate high-salt environments and would therefore benefit from neural mechanisms that enable the navigation of salt gradients to avoid high salinity. Yet zebrafish lack epithelial sodium channels, the primary conduit land animals use to taste sodium. This suggests fish may possess novel, undescribed mechanisms for salt detection. In the present study, we show that zebrafish indeed respond to small temporal increases in salt by reorienting more frequently. Further, we use calcium imaging techniques to identify the olfactory system as the primary sense used for salt detection, and we find that a specific subset of olfactory receptor neurons encodes absolute salinity concentrations by detecting monovalent anions and cations. In summary, our study establishes that zebrafish larvae have the ability to navigate and thus detect salinity gradients and that this is achieved through previously undescribed sensory mechanisms for salt detection.


Asunto(s)
Reacción de Prevención , Cloruros , Larva/fisiología , Agua de Mar/química , Olfato , Sodio , Pez Cebra/fisiología , Animales , Cloruros/análisis , Percepción Olfatoria , Sodio/análisis , Cloruro de Sodio/análisis
8.
Nat Commun ; 12(1): 3798, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145235

RESUMEN

Olfactory sensory neurons (OSNs) are functionally defined by their expression of a unique odorant receptor (OR). Mechanisms underlying singular OR expression are well studied, and involve a massive cross-chromosomal enhancer interaction network. Trace amine-associated receptors (TAARs) form a distinct family of olfactory receptors, and here we find that mechanisms regulating Taar gene choice display many unique features. The epigenetic signature of Taar genes in TAAR OSNs is different from that in OR OSNs. We further identify that two TAAR enhancers conserved across placental mammals are absolutely required for expression of the entire Taar gene repertoire. Deletion of either enhancer dramatically decreases the expression probabilities of different Taar genes, while deletion of both enhancers completely eliminates the TAAR OSN populations. In addition, both of the enhancers are sufficient to drive transgene expression in the partially overlapped TAAR OSNs. We also show that the TAAR enhancers operate in cis to regulate Taar gene expression. Our findings reveal a coordinated control of Taar gene choice in OSNs by two remote enhancers, and provide an excellent model to study molecular mechanisms underlying formation of an olfactory subsystem.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica/genética , Neuronas Receptoras Olfatorias/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/metabolismo , Animales , Animales Modificados Genéticamente , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Mucosa Olfatoria/metabolismo , Imagen Óptica , Receptores Acoplados a Proteínas G/metabolismo , Olfato/genética , Pez Cebra/genética
9.
Curr Biol ; 30(1): 70-82.e4, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31866367

RESUMEN

Nervous systems have evolved to combine environmental information with internal state to select and generate adaptive behavioral sequences. To better understand these computations and their implementation in neural circuits, natural behavior must be carefully measured and quantified. Here, we collect high spatial resolution video of single zebrafish larvae swimming in a naturalistic environment and develop models of their action selection across exploration and hunting. Zebrafish larvae swim in punctuated bouts separated by longer periods of rest called interbout intervals. We take advantage of this structure by categorizing bouts into discrete types and representing their behavior as labeled sequences of bout types emitted over time. We then construct probabilistic models-specifically, marked renewal processes-to evaluate how bout types and interbout intervals are selected by the fish as a function of its internal hunger state, behavioral history, and the locations and properties of nearby prey. Finally, we evaluate the models by their predictive likelihood and their ability to generate realistic trajectories of virtual fish swimming through simulated environments. Our simulations capture multiple timescales of structure in larval zebrafish behavior and expose many ways in which hunger state influences their action selection to promote food seeking during hunger and safety during satiety.


Asunto(s)
Natación/fisiología , Pez Cebra/fisiología , Animales , Hambre , Modelos Biológicos , Modelos Estadísticos , Conducta Predatoria/fisiología , Percepción Visual/fisiología
10.
Sci Adv ; 4(10): eaav1966, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30402545

RESUMEN

How appetite is modulated by physiological, contextual, or pharmacological influence is still unclear. Specifically, the discovery of appetite modulators is compromised by the abundance of side effects that usually limit in vivo drug action. We set out to identify neuroactive drugs that trigger only their intended single behavioral change, which would provide great therapeutic advantages. To identify these ideal bioactive small molecules, we quantified the impact of more than 10,000 compounds on an extended series of different larval zebrafish behaviors using an in vivo imaging strategy. Known appetite-modulating drugs altered feeding and a pleiotropy of behaviors. Using this multibehavioral strategy as an active filter for behavioral side effects, we identified previously unidentified compounds that selectively increased or reduced food intake by more than 50%. The general applicability of this strategy is shown by validation in mice. Mechanistically, most candidate compounds were independent of the main neurotransmitter systems. In addition, we identified compounds with multibehavioral impact, and correlational comparison of these profiles with those of known drugs allowed for the prediction of their mechanism of action. Our results illustrate an unbiased and translational drug discovery strategy for ideal psychoactive compounds and identified selective appetite modulators in two vertebrate species.


Asunto(s)
Depresores del Apetito/farmacología , Estimulantes del Apetito/farmacología , Apetito/fisiología , Conducta Animal/efectos de los fármacos , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento/métodos , Animales , Apetito/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Natación , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA